NeuroAI for AI Safety

Patrick Mineault

Niccolò Zanichelli*

Joanne Zichen Peng*

Anton Arkhipov

Eli Bingham

Julian Jara-Ettinger

Emily Mackevicius

Adam Marblestone

Marcelo Mattar

Andrew Payne

Sophia Sanborn

Karen Schroeder

Zenna Tavares

Andreas Tolias

Read more about the authors here.

Abstract

As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain’s representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety.

Read as PDF on arXiv

Appendix

Log-sigmoid scaling laws

We were surprised to find log-sigmoid scaling curves for digital in both empirical data and simulations; to the best of our knowledge, this has not been reported in the literature. We thus searched for a regime where a log-sigmoid scaling law follows naturally from asymptotics.

Consider a linear regression model–similar to the LNP model considered in the main text (Section 10.1), but more analytically tractable: \[y = X w + \epsilon\] where:

  • \(X \in \mathbb{R}^{N \times M}\) with entries \(X_{ij} \sim \mathcal{N}(0, 1)\).

  • \(w \sim \mathcal{N}\left(0, \frac{1}{M} I_M\right)\).

  • \(\epsilon \sim \mathcal{N}\left(0, \sigma_N^2 I_N\right)\).

  • The validation data \(X_{\text{val}} \in \mathbb{R}^{N_{\text{val}} \times M}\) with entries \(X_{\text{val}, ij} \sim \mathcal{N}(0, 1)\).

Note that with this definition, \(\text{var}(y) = 1 + \sigma_N^2\). We use a Maximum A Posteriori (MAP) estimate of \(w\) with a prior matching its sampling distribution: \[w_{\text{MAP}} = \left( X^\top X + M \sigma_N^2 I_M \right)^{-1} X^\top y\]

The Fraction of Explained Variance Estimator (FEVE) on the validation set is defined as: \[\text{FEVE} = 1 - \frac{\mathbb{E}\left[ \left( y_{\text{val}} - X_{\text{val}} w_{\text{MAP}} \right)^2 \right] - \sigma_N^2}{\mathbb{E}\left[ y_{\text{val}}^2 \right] - \sigma_N^2}\] where \(y_{\text{val}} = X_{\text{val}} w + \epsilon_{\text{val}}\).

Equivalently, the FEVE is the \(R^2\) on the validation set if there’s no noise in the validation set.

The denominator of FEVE is: \[\mathbb{E}\left[ y_{\text{val}}^2 \right] - \sigma_N^2 = 1\]

Similarly, the numerator is:

\[\mathbb{E}\left[ \left( X_{\text{val}} \left( w - w_{\text{MAP}} \right) \right)^2 \right]\]

Approximating \(X_{\text{val}}^\top X_{\text{val}} \approx N_{\text{val}} I_M\) (since entries are i.i.d. standard normal), the design matrix falls out, and we find that the numerator is:

\[\approx \mathbb{E}\left[ \left\| w - w_{\text{MAP}} \right\|^2 \right]\]

The posterior covariance matrix is: \[\Sigma_{\text{post}} = \left( X^\top X + M \sigma_N^2 I_M \right)^{-1} M \sigma_N^2 I_M\] Again using the expected value of the covariance matrix, we find that: \[\Sigma_{\text{post}} \approx \left( N I_M + M \sigma_N^2 I_M \right)^{-1} M \sigma_N^2 I_M = \frac{M \sigma_N^2}{N + M \sigma_N^2} I_M\] Therefore: \[\mathbb{E}\left[ \left\| w - w_{\text{MAP}} \right\|^2 \right] = \operatorname{Tr}\left( \Sigma_{\text{post}} \right) = \frac{M^2 \sigma_N^2}{N + M \sigma_N^2}\]

Finally, the FEVE is: \[\text{FEVE} \approx \frac{ N }{ N + M \sigma_N^2 }\]

We note that this can be expressed as the log sigmoid:

\[\text{FEVE} = \sigma(\log(N) - \log(M) - \log(\sigma^2_N))\]

Thus, under the assumptions we use, the scaling law for linear regression is a log-sigmoid. We note that our expression is valid when \(M > N\) and potentially high noise, the so-called classic regime. By contrast, Canatar et al. (2023) [113] tackle a different regime where there are far more regressors than observations, \(N > M\), and no noise, the so-called modern or interpolation regime.

We believe that the scenario we consider is a better reflection of practices in digital twins, as opposed as the analysis in [113], which better reflects practices in comparing neural networks and brains with task-driven neural networks. Neural data is noisy, and in the limit of high observation noise, we don’t always get better fits in the interpolation regime. It is common for digital twins to be fit in the classic regime; for example, Lurz et al. (2021) [87] have fewer than a hundred parameters in their readout, but thousands of observations. Future work should address how these two frameworks can be merged to cover the full range of scenarios in which digital twins and task-driven neural networks are fit.

[1] Mnih, V., K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learning”, arXiv [cs.LG], 2013.
[2] Silver, D., A. Huang, C.J. Maddison, et al., “Mastering the game of go with deep neural networks and tree search”, Nature 529(7587), 2016, pp. 484–489.
[3] Silver, D., T. Hubert, J. Schrittwieser, et al., “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 362(6419), 2018, pp. 1140–1144.
[4] Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks”, Advances in neural information processing systems, Curran Associates, Inc. (2012).
[5] Dosovitskiy, A., L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words: Transformers for image recognition at scale”, 2020.
[6] Grigorescu, S., B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques for autonomous driving”, arXiv [cs.LG], 2019.
[7] Rajpurkar, P., E. Chen, O. Banerjee, and E.J. Topol, AI in health and medicine”, Nat. Med. 28(1), 2022, pp. 31–38.
[8] Jumper, J., R. Evans, A. Pritzel, et al., “Highly accurate protein structure prediction with AlphaFold, Nature 596(7873), 2021, pp. 583–589.
[9] Watson, J.L., D. Juergens, N.R. Bennett, et al., “Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models”, 2022.
[10] Brown, T.B., B. Mann, N. Ryder, et al., “Language models are few-shot learners”, 2020.
[11] Bubeck, S., V. Chandrasekaran, R. Eldan, et al., “Sparks of artificial general intelligence: Early experiments with GPT-4”, 2023.
[12] Trinh, T.H., Y. Wu, Q.V. Le, H. He, and T. Luong, “Solving olympiad geometry without human demonstrations”, Nature 625(7995), 2024, pp. 476–482.
[13] Lam, R., A. Sanchez-Gonzalez, M. Willson, et al., “Learning skillful medium-range global weather forecasting”, Science 382(6677), 2023, pp. 1416–1421.
[14] Kochkov, D., J. Yuval, I. Langmore, et al., “Neural general circulation models for weather and climate”, Nature 632(8027), 2024, pp. 1060–1066.
[15] Pyzer-Knapp, E.O., J.W. Pitera, P.W.J. Staar, et al., “Accelerating materials discovery using artificial intelligence, high performance computing and robotics”, Npj Comput. Mater. 8(1), 2022, pp. 1–9.
[16] Rolnick, D., P.L. Donti, L.H. Kaack, et al., “Tackling climate change with machine learning”, arXiv [cs.CY], 2019.
[17] Luccioni, A.S., S. Viguier, and A.-L. Ligozat, “Estimating the carbon footprint of BLOOM, a 176B parameter language model”, Journal of Machine Learning Research, 2023, pp. 253:1–253:15.
[18] Zhang, B.H., B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with adversarial learning”, arXiv [cs.LG], 2018.
[19] Bender, E.M., T. Gebru, A. McMillan-Major, and M. Mitchell, “On the dangers of stochastic parrots: Can language models be too big?”, Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, (2021).
[20] Peterson, D., and S. Hoffman, Geopolitical implications of AI and digital surveillance adoption, Brookings Institute, 2022.
[21] Urbina, F., F. Lentzos, C. Invernizzi, and S. Ekins, “Dual use of artificial intelligence-powered drug discovery”, Nat. Mach. Intell. 4(3), 2022, pp. 189–191.
[22] Bostrom, N., “Superintelligence: Paths, dangers, strategies”, xvi 328, 2014.
[23] Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, Concrete problems in AI safety, arXiv, 2016.
[24] Bengio, Y., G. Hinton, A. Yao, et al., “Managing extreme AI risks amid rapid progress”, Science 384(6698), 2024, pp. 842–845.
[25] Bengio, Y., et al., Interim report, International Scientific Report on the Safety of Advanced AI, 2024.
[26] Hendrycks, D., M. Mazeika, and T. Woodside, “An overview of catastrophic AI risks”, 2023.
[27] Eloundou, T., S. Manning, P. Mishkin, and D. Rock, GPTs are GPTs: An early look at the labor market impact potential of large language models”, 2023.
[28] Ramesh, A., P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with CLIP latents”, arXiv [cs.CV], 2022.
[29] Christian, B., The alignment problem: Machine learning and human values, WW Norton, New York, NY, 2021.
[30] Rapp, J.T., B.J. Bremer, and P.A. Romero, “Self-driving laboratories to autonomously navigate the protein fitness landscape”, Nat Chem Eng 1(1), 2024, pp. 97–107.
[31] Park, J.S., J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, and M.S. Bernstein, “Generative agents: Interactive simulacra of human behavior”, arXiv [cs.HC], 2023.
[32] Lála, J., O. O’Donoghue, A. Shtedritski, S. Cox, S.G. Rodriques, and A.D. White, PaperQA: Retrieval-augmented generative agent for scientific research”, arXiv [cs.CL], 2023.
[33] Lu, C., C. Lu, R.T. Lange, J. Foerster, J. Clune, and D. Ha, “The AI scientist: Towards fully automated open-ended scientific discovery”, arXiv [cs.AI], 2024.
[34] Jimenez, C.E., J. Yang, A. Wettig, et al., SWE-bench: Can language models resolve real-world GitHub issues?”, arXiv [cs.CL], 2023.
[35] Yang, J., C.E. Jimenez, A. Wettig, et al., SWE-agent: Agent-computer interfaces enable automated software engineering”, arXiv [cs.SE], 2024.
[36] Russell, S., Human compatible: Artificial intelligence and the problem of control, Viking, 2019.
[37] Richards, B., B. Agüera y Arcas, G. Lajoie, and D. Sridhar, “The illusion of AI’s existential risk”, Noema, 2023.
[38] Cisek, P., “Evolution of behavioural control from chordates to primates”, Phil. Trans. R. Soc. B 377(1844), 2022.
[39] Bennett, M., A brief history of intelligence, Mariner Books, 2023.
[40] Ortega, P.A., V. Maini, and D.M.S. Team, “Building safe artificial intelligence: Specification, robustness, and assurance”, DeepMind Safety Research Blog, 2018.
[41] Geirhos, R., J.-H. Jacobsen, C. Michaelis, et al., “Shortcut learning in deep neural networks”, Nat Mach Intell 2(11), 2020, pp. 665–673.
[42] Lindsay, G.W., and D. Bau, “Testing methods of neural systems understanding”, Cogn. Syst. Res. 82, 2023, pp. 101156.
[43] Goodfellow, I.J., J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples”, arXiv [stat.ML], 2014.
[44] Elsayed, G.F., S. Shankar, B. Cheung, et al., “Adversarial examples that fool both computer vision and time-limited humans”, Neural Inf Process Syst 31, 2018, pp. 3914–3924.
[45] Ilyas, A., S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial examples are not bugs, they are features”, 2019.
[46] Guo, C., M.J. Lee, G. Leclerc, et al., “Adversarially trained neural representations may already be as robust as corresponding biological neural representations”, 2022.
[47] Bartoldson, B.R., J. Diffenderfer, K. Parasyris, and B. Kailkhura, “Adversarial robustness limits via scaling-law and human-alignment studies”, arXiv [cs.LG], 2024.
[48] Fort, S., and B. Lakshminarayanan, “Ensemble everything everywhere: Multi-scale aggregation for adversarial robustness”, arXiv [cs.CV], 2024.
[49] Li, Z., W. Brendel, E. Walker, et al., “Learning from brains how to regularize machines”, Advances in neural information processing systems, Curran Associates, Inc. (2019).
[50] Dapello, J., T. Marques, M. Schrimpf, F. Geiger, D. Cox, and J.J. DiCarlo, “Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations”, Advances in Neural Information Processing Systems 33, 2020, pp. 13073–13087.
[51] Safarani, S., A. Nix, K. Willeke, et al., “Towards robust vision by multi-task learning on monkey visual cortex”, arXiv [cs.CV], 2021.
[52] Li, Z., J. Ortega Caro, E. Rusak, et al., “Robust deep learning object recognition models rely on low frequency information in natural images”, PLOS Computational Biology 19(3), 2023, pp. e1010932.
[53] Marr, D., Vision: A computational approach, Freeman & Co., San Francisco, 1982.
[54] Bostrom, N., and A. Sandberg, Whole brain emulation: A roadmap, Future of Humanity Institute, 2008.
[55] Byrnes, S., “Intro to brain-like-AGI safety”, 2022.
[56] Cvitkovic, M., “Neurotechnology is critical for AI alignment”, 2023.
[57] Thiergart, L., and S.L. Norman, Distillation of neurotech and alignment workshop january 2023, LessWrong, 2023.
[58] Olah, C., and S. Carter, “Research debt”, Distill, 2017.
[59] Kahneman, D., Thinking, fast and slow, Farrar, Straus & Giroux, New York, NY, 2013.
[60] Harari, Y.N., Sapiens: A brief history of humankind, Harper, New York, NY, 2015.
[61] Descartes, R., Discourse on method, 1637.
[62] Zhuang, C., S. Yan, A. Nayebi, et al., “Unsupervised neural network models of the ventral visual stream”, Proc. Natl. Acad. Sci. U. S. A. 118(3), 2021.
[63] Nagarajan, V., A. Andreassen, and B. Neyshabur, “Understanding the failure modes of out-of-distribution generalization”, 2021.
[64] Lake, B.M., T.D. Ullman, J.B. Tenenbaum, and S.J. Gershman, “Building machines that learn and think like people”, Behav. Brain Sci. 40, 2017, pp. e253.
[65] Geirhos, R., P. Rubisch, C. Michaelis, M. Bethge, F.A. Wichmann, and W. Brendel, ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness”, arXiv.org, 2018.
[66] Wang, E.Y., P.G. Fahey, K. Ponder, et al., “Towards a foundation model of the mouse visual cortex”, bioRxiv; Accepted in Nature, 2024.
[67] Bashivan, P., K. Kar, and J.J. DiCarlo, “Neural population control via deep image synthesis”, Science 364(6439), 2019.
[68] Walker, E.Y., F.H. Sinz, E. Cobos, et al., “Inception loops discover what excites neurons most using deep predictive models”, Nat. Neurosci. 22(12), 2019, pp. 2060–2065.
[69] Gu, J., X. Jia, P. de Jorge, et al., “A survey on transferability of adversarial examples across deep neural networks”, arXiv [cs.CV], 2023.
[70] Brendel, W., J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks against black-box machine learning models”, arXiv [stat.ML], 2017.
[71] Athalye, A., L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial examples”, arXiv [cs.CV], 2017.
[72] Howe, N., M. Zajac, I. McKenzie, et al., “Exploring scaling trends in LLM robustness”, arXiv [cs.LG], 2024.
[73] Wang, T.T., A. Gleave, T. Tseng, et al., “Adversarial policies beat superhuman go AIs, arXiv [cs.LG], 2022.
[74] Gleave, A., AI safety in a world of vulnerable machine learning systems”, 2023.
[75] Zador, A.M., “A critique of pure learning and what artificial neural networks can learn from animal brains”, Nat. Commun. 10(1), 2019, pp. 1–7.
[76] Hasson, U., S.A. Nastase, and A. Goldstein, “Direct fit to nature: An evolutionary perspective on biological and artificial neural networks”, Neuron 105(3), 2020, pp. 416–434.
[77] Lake, B.M., R. Salakhutdinov, and J.B. Tenenbaum, “Human-level concept learning through probabilistic program induction”, Science 350(6266), 2015, pp. 1332–1338.
[78] Filos, A., P. Tigas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal, “Can autonomous vehicles identify, recover from, and adapt to distribution shifts?”, arXiv [cs.LG], 2020.
[79] Sucholutsky, I., L. Muttenthaler, A. Weller, et al., “Getting aligned on representational alignment”, 2023.
[80] Dalrymple, D.“davidad”., J. Skalse, Y. Bengio, et al., “Towards guaranteed safe AI: A framework for ensuring robust and reliable AI systems”, 2024.
[81] Linsley, D., P. Zhou, A.K. Ashok, et al., “The 3D-PC: A benchmark for visual perspective taking in humans and machines”, arXiv [cs.CV], 2024.
[82] Sinz, F., A.S. Ecker, P. Fahey, et al., “Stimulus domain transfer in recurrent models for large scale cortical population prediction on video”, Advances in neural information processing systems 31, 2018.
[83] Franke, K., K.F. Willeke, K. Ponder, et al., “State-dependent pupil dilation rapidly shifts visual feature selectivity”, Nature 610(7930), 2022, pp. 128–134.
[84] Fu, J., S. Shrinivasan, K. Ponder, et al., “Pattern completion and disruption characterize contextual modulation in mouse visual cortex”, bioRxiv and under revision in Nature, 2023, pp. 2023–03.
[85] Ding, Z., D.T. Tran, K. Ponder, et al., “Bipartite invariance in mouse primary visual cortex”, bioRxiv and under revision in Nature, 2023.
[86] Wu, M.C.K., S.V. David, and J.L. Gallant, “Complete functional characterization of sensory neurons by system identification”, Annu. Rev. Neurosci. 29, 2006, pp. 477–505.
[87] Lurz, K.-K., M. Bashiri, K. Willeke, et al., “Generalization in data-driven models of primary visual cortex”, (2020).
[88] Cobos, E., T. Muhammad, P.G. Fahey, et al., “It takes neurons to understand neurons: Digital twins of visual cortex synthesize neural metamers”, 2022.
[89] Du, F., M.A. Núñez-Ochoa, M. Pachitariu, and C. Stringer, “Towards a simplified model of primary visual cortex”, 2024.
[90] Ding, Z., D.T. Tran, K. Ponder, et al., “Bipartite invariance in mouse primary visual cortex”, bioRxivorg, 2023.
[91] Cadena, S.A., G.H. Denfield, E.Y. Walker, et al., “Deep convolutional models improve predictions of macaque V1 responses to natural images”, PLoS Comput. Biol. 15(4), 2019, pp. e1006897.
[92] Miao, H.-Y., and F. Tong, “Convolutional neural network models of neuronal responses in macaque V1 reveal limited non-linear processing”, bioRxivorg, 2023, pp. 2023.08.26.554952.
[93] Willeke, K.F., K. Restivo, K. Franke, et al., “Deep learning-driven characterization of single cell tuning in primate visual area V4 unveils topological organization”, bioRxiv, 2023, pp. 2023.05.12.540591.
[94] Cowley, B.R., P.L. Stan, J.W. Pillow, and M.A. Smith, “Compact deep neural network models of visual cortex”, 2023.
[95] Cadena, S.A., K.F. Willeke, K. Restivo, et al., “Diverse task-driven modeling of macaque V4 reveals functional specialization towards semantic tasks”, PLoS Comput. Biol. 20(5), 2024, pp. e1012056.
[96] Pierzchlewicz, P.A., K.F. Willeke, A.F. Nix, et al., “Energy guided diffusion for generating neurally exciting images”, 2023.
[97] Wang, T., T.S. Lee, H. Yao, et al., “Large-scale calcium imaging reveals a systematic V4 map for encoding natural scenes”, Nat. Commun. 15(1), 2024, pp. 6401.
[98] Rust, N.C., V. Mante, E.P. Simoncelli, and J.A. Movshon, “How MT cells analyze the motion of visual patterns”, Nat. Neurosci. 9(11), 2006, pp. 1421–1431.
[99] Nishimoto, S., and J.L. Gallant, “A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies”, J. Neurosci. 31(41), 2011, pp. 14551–14564.
[100] Willmore, B.D.B., R.J. Prenger, and J.L. Gallant, “Neural representation of natural images in visual area V2, Journal of Neuroscience 30(6), 2010, pp. 2102.
[101] Mineault, P.J., F.A. Khawaja, D.A. Butts, and C.C. Pack, “Hierarchical processing of complex motion along the primate dorsal visual pathway”, Proc. Natl. Acad. Sci. U. S. A. 109, 2012, pp. 972–980.
[102] Pasupathy, A., and C.E. Connor, “Population coding of shape in area V4, Nat. Neurosci. 5(12), 2002, pp. 1332–1338.
[103] Rançon, U., T. Masquelier, and B.R. Cottereau, “A general model unifying the adaptive, transient and sustained properties of ON and OFF auditory neural responses”, PLoS Comput. Biol. 20(8), 2024, pp. e1012288.
[104] Marin Vargas, A., A. Bisi, A.S. Chiappa, C. Versteeg, L.E. Miller, and A. Mathis, “Task-driven neural network models predict neural dynamics of proprioception”, Cell 187(7), 2024, pp. 1745–1761.e19.
[105] Fu, J., S. Shrinivasan, K. Ponder, et al., “Pattern completion and disruption characterize contextual modulation in mouse visual cortex”, 2023.
[106] Hubel, D.H., and T.N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex”, J. Physiol. 148, 1959, pp. 574–591.
[107] Olshausen, B.A., and D.J. Field, “What is the other 85 percent of V1 doing?”, In 23 problems in systems neuroscience. Oxford University PressNew York, 2006, 182–212.
[108] Li, B.M., I.M. Cornacchia, N.L. Rochefort, and A. Onken, V1T: Large-scale mouse V1 response prediction using a vision transformer”, arXiv [cs.CV], 2023.
[109] Kaplan, J., S. McCandlish, T. Henighan, et al., “Scaling laws for neural language models”, 2020.
[110] Talebi, V., and C.L. Baker Jr, “Natural versus synthetic stimuli for estimating receptive field models: A comparison of predictive robustness”, J. Neurosci. 32(5), 2012, pp. 1560–1576.
[111] Cowley, B., and J.W. Pillow, “High-contrast “gaudy”images improve the training of deep neural network models of visual cortex”, Advances in neural information processing systems, Curran Associates, Inc. (2020), 21591–21603.
[112] Ponce, C.R., W. Xiao, P.F. Schade, T.S. Hartmann, G. Kreiman, and M.S. Livingstone, “Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences”, Cell 177(4), 2019, pp. 999–1009.e10.
[113] Canatar, A., J. Feather, A. Wakhloo, and S. Chung, “A spectral theory of neural prediction and alignment”, Neural information processing systems, (2023).
[114] Bashiri, M., E. Walker, K.-K. Lurz, et al., “A flow-based latent state generative model of neural population responses to natural images”, Advances in Neural Information Processing Systems 34, 2021, pp. 15801–15815.
[115] Williams, A.H., E. Kunz, S. Kornblith, and S.W. Linderman, “Generalized shape metrics on neural representations”, arXiv:2110.14739 [cs, stat], 2021.
[116] Duong, L.R., J. Zhou, J. Nassar, J. Berman, J. Olieslagers, and A.H. Williams, “Representational dissimilarity metric spaces for stochastic neural networks”, 2023.
[117] Kriegeskorte, N., and X.-X. Wei, “Neural tuning and representational geometry”, Nat. Rev. Neurosci. 22(11), 2021, pp. 703–718.
[118] Yasar, T.B., P. Gombkoto, A.L. Vyssotski, et al., “Months-long tracking of neuronal ensembles spanning multiple brain areas with ultra-flexible tentacle electrodes”, Nat. Commun. 15(1), 2024, pp. 4822.
[119] Tootell, R.B.H., D. Tsao, and W. Vanduffel, “Neuroimaging weighs in: Humans meet macaques in ‘primate’ visual cortex”, J. Neurosci. 23(10), 2003, pp. 3981–3989.
[120] Liu, X., P. Chen, X. Ding, et al., “A narrative review of cortical visual prosthesis systems: The latest progress and significance of nanotechnology for the future”, Ann. Transl. Med. 10(12), 2022, pp. 716.
[121] St-Yves, G., E.J. Allen, Y. Wu, K. Kay, and T. Naselaris, “Brain-optimized neural networks learn non-hierarchical models of representation in human visual cortex”, 2022.
[122] Card, N.S., M. Wairagkar, C. Iacobacci, et al., “An accurate and rapidly calibrating speech neuroprosthesis”, 2023.
[123] Moses, D.A., S.L. Metzger, J.R. Liu, et al., “Neuroprosthesis for decoding speech in a paralyzed person with anarthria”, N. Engl. J. Med. 385(3), 2021, pp. 217–227.
[124] Bouchard, K.E., N. Mesgarani, K. Johnson, and E.F. Chang, “Functional organization of human sensorimotor cortex for speech articulation”, Nature advance online publication, 2013.
[125] Mathis, M.W., A. Perez Rotondo, E.F. Chang, A.S. Tolias, and A. Mathis, “Decoding the brain: From neural representations to mechanistic models”, Cell 187(21), 2024, pp. 5814–5832.
[126] Défossez, A., C. Caucheteux, J. Rapin, O. Kabeli, and J.-R. King, “Decoding speech from non-invasive brain recordings”, 2022.
[127] Vaidya, A.R., S. Jain, and A.G. Huth, “Self-supervised models of audio effectively explain human cortical responses to speech”, 2022.
[128] Schrimpf, M., I. Blank, G. Tuckute, et al., “Artificial neural networks accurately predict language processing in the brain”, bioRxiv, 2020, pp. 2020.06.26.174482.
[129] Zhou, Z., and C. Firestone, “Humans can decipher adversarial images”, Nat. Commun. 10(1), 2018, pp. 1334.
[130] Veerabadran, V., J. Goldman, S. Shankar, et al., “Subtle adversarial image manipulations influence both human and machine perception”, Nat. Commun. 14(1), 2023, pp. 4933.
[131] Gaziv, G., M.J. Lee, and J. DiCarlo, “Strong and precise modulation of human percepts via robustified ANNs, Neural Inf Process Syst, 2023.
[132] Dapello, J., K. Kar, M. Schrimpf, et al., “Aligning model and macaque inferior temporal cortex representations improves model-to-human behavioral alignment and adversarial robustness”, 2022.
[133] Li, Z., J. Ortega Caro, E. Rusak, et al., “Robust deep learning object recognition models rely on low frequency information in natural images”, PLOS Computational Biology 19(3), 2023, pp. e1010932.
[134] Pirlot, C., R.C. Gerum, C. Efird, J. Zylberberg, and A. Fyshe, “Improving the accuracy and robustness of CNNs using a deep CCA neural data regularizer”, 2022.
[135] Croce, F., M. Andriushchenko, V. Sehwag, et al., RobustBench: A standardized adversarial robustness benchmark”, arXiv preprint arXiv:2010. 09670, 2020.
[136] Attias, E., C. Pehlevan, and D. Obeid, “A brain-inspired regularizer for adversarial robustness”, arXiv [cs.LG], 2024.
[137] Stevenson, I.H., and K.P. Kording, “How advances in neural recording affect data analysis”, Nat. Neurosci. 14(2), 2011, pp. 139–142.
[138] Urai, A.E., B. Doiron, A.M. Leifer, and A.K. Churchland, “Large-scale neural recordings call for new insights to link brain and behavior”, Nat Neurosci 25(1), 2022, pp. 11–19.
[139] Manley, J., S. Lu, K. Barber, et al., “Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number”, Neuron 112(10), 2024, pp. 1694–1709.e5.
[140] Richards, B.A., T.P. Lillicrap, P. Beaudoin, et al., “A deep learning framework for neuroscience”, Nat. Neurosci. 22(11), 2019, pp. 1761–1770.
[141] Sandbrink, J., H. Hobbs, J. Swett, A. Dafoe, and A. Sandberg, “Differential technology development: A responsible innovation principle for navigating technology risks”, SSRN Electron. J., 2022.
[142] Hanson, R., The age of em: Work, love, and life when robots rule the earth, Oxford University Press, London, England, 2016.
[143] Brunton, S.L., and J.N. Kutz, Data-driven science and engineering: Machine learning, dynamical systems, and control, Cambridge University Press, Cambridge, England, 2019.
[144] Zador, A., B. Richards, B. Ölveczky, et al., “Toward next-generation artificial intelligence: Catalyzing the NeuroAI revolution”, 2022.
[145] Merel, J., D. Aldarondo, J. Marshall, Y. Tassa, G. Wayne, and B. Ölveczky, “Deep neuroethology of a virtual rodent”, arXiv:1911.09451 [q-bio], 2019.
[146] Aldarondo, D., J. Merel, J.D. Marshall, et al., “A virtual rodent predicts the structure of neural activity across behaviours”, Nature 632(8025), 2024, pp. 594–602.
[147] Dorkenwald, S., A. Matsliah, A.R. Sterling, et al., “Neuronal wiring diagram of an adult brain”, bioRxiv, 2023, pp. 2023.06.27.546656.
[148] Azevedo, A., E. Lesser, J.S. Phelps, et al., “Connectomic reconstruction of a female drosophila ventral nerve cord”, Nature 631(8020), 2024, pp. 360–368.
[149] Shiu, P.K., G.R. Sterne, N. Spiller, et al., “A drosophila computational brain model reveals sensorimotor processing”, Nature 634(8032), 2024, pp. 210–219.
[150] Vaxenburg, R., I. Siwanowicz, J. Merel, et al., “Whole-body simulation of realistic fruit fly locomotion with deep reinforcement learning”, 2024.
[151] Lappalainen, J.K., F.D. Tschopp, S. Prakhya, et al., “Connectome-constrained deep mechanistic networks predict neural responses across the fly visual system at single-neuron resolution”, 2023.
[152] Cowley, B.R., A.J. Calhoun, N. Rangarajan, et al., “Mapping model units to visual neurons reveals population code for social behaviour”, Nature 629(8014), 2024, pp. 1100–1108.
[153] Cook, S.J., T.A. Jarrell, C.A. Brittin, et al., “Whole-animal connectomes of both caenorhabditis elegans sexes”, Nature 571(7763), 2019, pp. 63–71.
[154] Haspel, G., B. Baker, I. Beets, et al., “The time is ripe to reverse engineer an entire nervous system: Simulating behavior from neural interactions”, arXiv [q-bio.NC], 2023.
[155] Simeon, Q., L.R. Venâncio, K.I. Zhao, et al., “Scaling properties for artificial neural network models of the \(\textit\{C. elegans\}\) nervous system”, 2023.
[156] Moravec, H., “Mind children: The future of robot and human intelligence”, Harvard UP, 1988.
[157] OpenAI, J. Achiam, S. Adler, et al., GPT-4 technical report”, arXiv [cs.CL], 2023.
[158] Dubey, A., A. Jauhri, A. Pandey, et al., “The llama 3 herd of models”, arXiv [cs.AI], 2024.
[159] Bommasani, R., D.A. Hudson, E. Adeli, et al., “On the opportunities and risks of foundation models”, 2022.
[160] Paszke, A., S. Gross, F. Massa, et al., PyTorch: An imperative style, high-performance deep learning library”, 2019.
[161] Wang, R., and Z.S. Chen, “Large-scale foundation models and generative AI for BigData neuroscience”, 2023.
[162] Pandarinath, C., D.J. O’Shea, J. Collins, et al., “Inferring single-trial neural population dynamics using sequential auto-encoders”, Nat. Methods 15(10), 2018, pp. 805–815.
[163] Ye, J., and C. Pandarinath, “Representation learning for neural population activity with neural data transformers”, 2021.
[164] Hurwitz, C., N. Kudryashova, A. Onken, and M.H. Hennig, “Building population models for large-scale neural recordings: Opportunities and pitfalls”, Curr. Opin. Neurobiol. 70, 2021, pp. 64–73.
[165] Azabou, M., V. Arora, V. Ganesh, et al., “A unified, scalable framework for neural population decoding”, Neural information processing systems, (2023).
[166] Zhang, Y., Y. Wang, D. Jimenez-Beneto, et al., “Towards a ‘universal translator’ for neural dynamics at single-cell, single-spike resolution”, 2024.
[167] Schulz, A., J. Vetter, R. Gao, et al., “Modeling conditional distributions of neural and behavioral data with masked variational autoencoders”, bioRxiv, 2024, pp. 2024.04.19.590082.
[168] Caro, J.O., A.H.O. Fonseca, C. Averill, et al., BrainLM: A foundation model for brain activity recordings”, 2023.
[169] Chau, G., C. Wang, S. Talukder, et al., “Population transformer: Learning population-level representations of neural activity”, arXiv [cs.LG], 2024.
[170] Abbaspourazad, S., O. Elachqar, A.C. Miller, S. Emrani, U. Nallasamy, and I. Shapiro, “Large-scale training of foundation models for wearable biosignals”, 2024.
[171] Jiang, W., L. Zhao, and B.-L. Lu, “Large brain model for learning generic representations with tremendous EEG data in BCI, (2023).
[172] Csaky, R., M.W.J. van Es, O.P. Jones, and M. Woolrich, “Foundational GPT model for MEG, arXiv [cs.LG], 2024.
[173] Labs, C.-L. at R., D. Sussillo, P. Kaifosh, and T. Reardon, “A generic noninvasive neuromotor interface for human-computer interaction”, 2024.
[174] Kupers, E.R., T. Knapen, E.P. Merriam, and K.N. Kay, “Principles of intensive human neuroimaging”, Trends Neurosci., 2024.
[175] Yang, C., M. Westover, and J. Sun, BIOT: Biosignal transformer for cross-data learning in the wild”, Neural information processing systems, (2023).
[176] Thomas, A.W., C. Ré, and R.A. Poldrack, “Self-supervised learning of brain dynamics from broad neuroimaging data”, 2023.
[177] Thapa, R., B. He, M.R. Kjaer, et al., SleepFM: Foundation model for sleep analysis”, (2024).
[178] Ho, A., T. Besiroglu, E. Erdil, et al., “Algorithmic progress in language models”, arXiv [cs.CL], 2024.
[179] Kato, S., H.S. Kaplan, T. Schrödel, et al., “Global brain dynamics embed the motor command sequence of caenorhabditis elegans”, Cell 163(3), 2015, pp. 656–669.
[180] Ahrens, M.B., M.B. Orger, D.N. Robson, J.M. Li, and P.J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy”, Nat. Methods 10(5), 2013, pp. 413–420.
[181] Gao, P., E. Trautmann, B. Yu, et al., “A theory of multineuronal dimensionality, dynamics and measurement”, 2017.
[182] Jazayeri, M., and S. Ostojic, “Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity”, arXiv [q-bio.NC], 2021.
[183] Stringer, C., M. Pachitariu, N. Steinmetz, M. Carandini, and K.D. Harris, “High-dimensional geometry of population responses in visual cortex”, bioRxiv, 2018, pp. 374090.
[184] Williams, A., “How to cross-validate PCA, clustering, and matrix decomposition models”, 2018.
[185] Yemini, E., A. Lin, A. Nejatbakhsh, et al., NeuroPAL: A multicolor atlas for whole-brain neuronal identification in C. elegans”, Cell 184(1), 2021, pp. 272–288.e11.
[186] Suzuki, R., C. Wen, D. Sprague, S. Onami, and K.D. Kimura, “Whole-brain spontaneous GCaMP activity with NeuroPAL cell ID information of semi-restricted worms”, 2024.
[187] Chen, X., Y. Mu, Y. Hu, et al., “Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish”, Neuron 100(4), 2018, pp. 876–890.e5.
[188] Stringer, C., M. Michaelos, D. Tsyboulski, S.E. Lindo, and M. Pachitariu, “High-precision coding in visual cortex”, Cell 184(10), 2021, pp. 2767–2778.e15.
[189] Friston, K., “The free-energy principle: A unified brain theory?”, Nat. Rev. Neurosci. 11(2), 2010, pp. 127–138.
[190] Kluger, D.S., M.G. Allen, and J. Gross, “Brain-body states embody complex temporal dynamics”, Trends Cogn. Sci. 28(8), 2024, pp. 695–698.
[191] Zhao, M., N. Wang, X. Jiang, et al., MetaWorm: An integrative data-driven model simulatingc. Elegansbrain, body and environment interactions”, bioRxiv, 2024, pp. 2024.02.22.581686.
[192] Lobato-Rios, V., S.T. Ramalingasetty, P.G. Özdil, J. Arreguit, A.J. Ijspeert, and P. Ramdya, NeuroMechFly, a neuromechanical model of adult drosophila melanogaster”, Nat. Methods 19(5), 2022, pp. 620–627.
[193] Guo, Y., W.J. Veneman, H.P. Spaink, and F.J. Verbeek, “Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-view in vivo imaging”, Biomed. Opt. Express 8(5), 2017, pp. 2611–2634.
[194] Ramalingasetty, S.T., S.M. Danner, J. Arreguit, et al., “A whole-body musculoskeletal model of the mouse”, IEEE Access 9(99), 2021, pp. 163861–163881.
[195] Gilmer, J.I., S. Coltman, G.C. Velasco, et al., “A novel biomechanical model of the mouse forelimb predicts muscle activity in optimal control simulations of reaching movements”, bioRxivorg, 2024, pp. 2024.09.05.611289.
[196] DeWolf, T., S. Schneider, P. Soubiran, A. Roggenbach, and M. Mathis, “Neuro-musculoskeletal modeling reveals muscle-level neural dynamics of adaptive learning in sensorimotor cortex”, bioRxiv, 2024, pp. 2024.09.11.612513.
[197] Almani, M.N., J. Lazzari, A. Chacon, and S. Saxena, “μSim: A goal-driven framework for elucidating the neural control of movement through musculoskeletal modeling”, bioRxiv, 2024, pp. 2024–02.
[198] Caggiano, V., H. Wang, G. Durandau, M. Sartori, and V. Kumar, MyoSuite – a contact-rich simulation suite for musculoskeletal motor control”, arXiv [cs.RO], 2022.
[199] Todorov, E., T. Erez, and Y. Tassa, MuJoCo: A physics engine for model-based control”, 2012 IEEE/RSJ international conference on intelligent robots and systems, IEEE (2012), 5026–5033.
[200] Codol, O., J.A. Michaels, M. Kashefi, J.A. Pruszynski, and P.L. Gribble, MotorNet: A python toolbox for controlling differentiable biomechanical effectors with artificial neural networks”, eLife, 2024.
[201] Barbagli, F., A. Frisoli, K. Salisbury, and M. Bergamasco, “Simulating human fingers: A soft finger proxy model and algorithm”, 12th international symposium on haptic interfaces for virtual environment and teleoperator systems, 2004. HAPTICS ’04. proceedings, IEEE (2004), 9–17.
[202] Bhattasali, N.X., A. Zador, and T.A. Engel, “Neural circuit architectural priors for embodied control”, Neural Inf Process Syst abs/2201.05242, 2022, pp. 12744–12759.
[203] Mathis, A., P. Mamidanna, K.M. Cury, et al., DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning”, Nat. Neurosci. 21(9), 2018, pp. 1281–1289.
[204] Karashchuk, P., K.L. Rupp, E.S. Dickinson, et al., “Anipose: A toolkit for robust markerless 3D pose estimation”, Cell Rep. 36(13), 2021, pp. 109730.
[205] Pereira, T.D., N. Tabris, A. Matsliah, et al., SLEAP: A deep learning system for multi-animal pose tracking”, Nat. Methods 19(4), 2022, pp. 486–495.
[206] Dunn, T.W., J.D. Marshall, K.S. Severson, et al., “Geometric deep learning enables 3D kinematic profiling across species and environments”, Nat. Methods 18(5), 2021, pp. 564–573.
[207] Mildenhall, B., P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, and R. Ng, NeRF: Representing scenes as neural radiance fields for view synthesis”, arXiv [cs.CV], 2020.
[208] Kerbl, B., G. Kopanas, T. Leimkühler, and G. Drettakis, 3D gaussian splatting for real-time radiance field rendering”, arXiv [cs.GR], 2023.
[209] Maheswaranathan, N., L.T. McIntosh, H. Tanaka, et al., “Interpreting the retinal neural code for natural scenes: From computations to neurons”, Neuron 111(17), 2023, pp. 2742–2755.e4.
[210] Seung, H.S., “Predicting visual function by interpreting a neuronal wiring diagram”, Nature 634(8032), 2024, pp. 113–123.
[211] Bermejo, R., D. Houben, and H.P. Zeigler, “Optoelectronic monitoring of individual whisker movements in rats”, J. Neurosci. Methods 83(2), 1998, pp. 89–96.
[212] Knutsen, P.M., D. Derdikman, and E. Ahissar, “Tracking whisker and head movements in unrestrained behaving rodents”, J. Neurophysiol. 93(4), 2005, pp. 2294–2301.
[213] Wilson, A.D., and M. Baietto, “Applications and advances in electronic-nose technologies”, Sensors (Basel) 9(7), 2009, pp. 5099–5148.
[214] Mamiya, A., P. Gurung, and J.C. Tuthill, “Neural coding of leg proprioception in drosophila”, Neuron 100(3), 2018, pp. 636–650.e6.
[215] Mamiya, A., A. Sustar, I. Siwanowicz, et al., “Biomechanical origins of proprioceptor feature selectivity and topographic maps in the drosophila leg”, Neuron 111(20), 2023, pp. 3230–3243.e14.
[216] Martinelli, F., B. Simsek, W. Gerstner, and J. Brea, “Expand-and-cluster: Parameter recovery of neural networks”, 2024.
[217] Liu, H.X., and S. Feng, “Curse of rarity for autonomous vehicles”, Nat. Commun. 15(1), 2024, pp. 4808.
[218] Beiran, M., and A. Litwin-Kumar, “Prediction of neural activity in connectome-constrained recurrent networks”, 2024.
[219] Pearl, J., Causality: Models, reasoning, and inference, Cambridge University Press, Cambridge, England, 2009.
[220] Bailey, D.H., A.J. Jung, A.M. Beltz, et al., “Causal inference on human behaviour”, Nature Human Behavior 8(8), 2024, pp. 1448–1459.
[221] Zhao, W., J.P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: A survey”, arXiv [cs.LG], 2020.
[222] Howard, J., and S. Ruder, “Universal language model fine-tuning for text classification”, arXiv [cs.CL], 2018.
[223] O’Byrne, J., and K. Jerbi, “How critical is brain criticality?”, Trends Neurosci. 45(11), 2022, pp. 820–837.
[224] Rust, N., “Is the brain uncontrollable, like the weather?”, 2023.
[225] Bischoff, S., A. Darcher, M. Deistler, et al., “A practical guide to statistical distances for evaluating generative models in science”, arXiv [cs.LG], 2024.
[226] Ostrow, M., A. Eisen, L. Kozachkov, and I. Fiete, “Beyond geometry: Comparing the temporal structure of computation in neural circuits with dynamical similarity analysis”, Advances in Neural Information Processing Systems 36, 2024.
[227] Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, GANs trained by a two time-scale update rule converge to a local nash equilibrium”, Advances in Neural Information Processing Systems 30, 2017.
[228] Zheng, L., W.-L. Chiang, Y. Sheng, et al., “Judging LLM-as-a-judge with MT-bench and chatbot arena”, arXiv [cs.CL], 2023.
[229] Sarma, G.P., A. Safron, and N.J. Hay, “Integrative biological simulation, neuropsychology, and AI safety”, 2019.
[230] Einevoll, G.T., A. Destexhe, M. Diesmann, et al., “The scientific case for brain simulations”, arXiv [q-bio.NC], 2019.
[231] Haufler, D., S. Ito, C. Koch, and A. Arkhipov, “Simulations of cortical networks using spatially extended conductance-based neuronal models”, J. Physiol. 601(15), 2023, pp. 3123–3139.
[232] Wellcome Trust, “Scaling up connectomics: The road to a whole mouse brain connectome”, 2023.
[233] Pospisil, D.A., M.J. Aragon, S. Dorkenwald, et al., “The fly connectome reveals a path to the effectome”, Nature 634(8032), 2024, pp. 201–209.
[234] Lu, W., L. Zeng, X. Du, et al., “Digital twin brain: A simulation and assimilation platform for whole human brain”, arXiv [cs.NE], 2023.
[235] Yamaura, H., J. Igarashi, and T. Yamazaki, “Simulation of a human-scale cerebellar network model on the K computer”, Front. Neuroinform. 14, 2020, pp. 16.
[236] Marblestone*, A.H., B.M. Zamft*, Y.G. Maguire, et al., “Physical principles for scalable neural recording”, Front. Comput. Neurosci. 7, 2013.
[237] Januszewski, M., and V. Jain, “Next-generation AI for connectomics”, Nat. Methods 21(8), 2024, pp. 1398–1399.
[238] Haehn, D., J. Hoffer, B. Matejek, et al., “Scalable interactive visualization for connectomics”, Informatics (MDPI) 4(3), 2017, pp. 29.
[239] White, J.G., E. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode caenorhabditis elegans”, Philos. Trans. R. Soc. Lond. B Biol. Sci. 314(1165), 1986, pp. 1–340.
[240] Consortium, T.M., J.A. Bae, M. Baptiste, et al., “Functional connectomics spanning multiple areas of mouse visual cortex”, 2023.
[241] Winding, M., B.D. Pedigo, C.L. Barnes, et al., “The connectome of an insect brain”, Science 379(6636), 2023, pp. eadd9330.
[242] Shapson-Coe, A., M. Januszewski, D.R. Berger, et al., “A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution”, Science 384(6696), 2024, pp. eadk4858.
[243] Zheng, Z., C.S. Own, A.A. Wanner, et al., “Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy”, Nat. Commun. 15(1), 2024, pp. 6860.
[244] Januszewski, M., J. Kornfeld, P.H. Li, et al., “High-precision automated reconstruction of neurons with flood-filling networks”, Nat. Methods 15(8), 2018, pp. 605–610.
[245] Sheridan, A., T.M. Nguyen, D. Deb, et al., “Local shape descriptors for neuron segmentation”, Nat. Methods 20(2), 2023, pp. 295–303.
[246] Kebschull, J.M., and A.M. Zador, “Cellular barcoding: Lineage tracing, screening and beyond”, Nat. Methods 15(11), 2018, pp. 871–879.
[247] Chen, X., Y.-C. Sun, H. Zhan, et al., “High-throughput mapping of long-range neuronal projection using in situ sequencing”, Cell 179(3), 2019, pp. 772–786.e19.
[248] Livet, J., T.A. Weissman, H. Kang, et al., “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system”, Nature 450(7166), 2007, pp. 56–62.
[249] Viswanathan, S., M.E. Williams, E.B. Bloss, et al., “High-performance probes for light and electron microscopy”, Nat. Methods 12(6), 2015, pp. 568–576.
[250] Mishchenko, Y., “On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers”, PLoS One 5(1), 2010, pp. e8853.
[251] Marblestone, A.H., and E.S. Boyden, “Designing tools for assumption-proof brain mapping”, Neuron 83(6), 2014, pp. 1239–1241.
[252] Qihua, C., C. Xuejin, W. Chenxuan, L. Yixiong, X. Zhiwei, and W. Feng, “Learning multimodal volumetric features for large-scale neuron tracing”, arXiv [cs.CV], 2024.
[253] Chen, F., P.W. Tillberg, and E.S. Boyden, “Optical imaging. Expansion microscopy”, Science 347(6221), 2015, pp. 543–548.
[254] Tavakoli, M.R., J. Lyudchik, M. Januszewski, et al., “Light-microscopy based dense connectomic reconstruction of mammalian brain tissue”, bioRxiv, 2024, pp. 2024.03.01.582884.
[255] Alon, S., D.R. Goodwin, A. Sinha, et al., “Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems”, Science 371(6528), 2021, pp. eaax2656.
[256] Kang, J., M.E. Schroeder, Y. Lee, et al., “Multiplexed expansion revealing for imaging multiprotein nanostructures in healthy and diseased brain”, Nat. Commun. 15(1), 2024, pp. 9722.
[257] Adamhmarblestone, P. by, “On whole-mammalian-brain connectomics”, 2019.
[258] Rodriques, S., “Optical microscopy provides a path to a $10M mouse brain connectome (if it eliminates proofreading)”, 2023. https://www.sam-rodriques.com/post/optical-microscopy-provides-a-path-to-a-10m-mouse-brain-connectome-if-it-eliminates-proofreading
[259] Linghu, C., S.L. Johnson, P.A. Valdes, et al., “Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics”, Cell 183(6), 2020, pp. 1682–1698.e24.
[260] Zador, A.M., J. Dubnau, H.K. Oyibo, H. Zhan, G. Cao, and I.D. Peikon, “Sequencing the connectome”, PLoS Biol. 10(10), 2012, pp. e1001411.
[261] Shin, D., M.E. Urbanek, H.H. Larson, et al., “High-complexity barcoded rabies virus for scalable circuit mapping using single-cell and single-nucleus sequencing”, bioRxiv, 2024, pp. 2024–10.
[262] Arkhipov, A., N.W. Gouwens, Y.N. Billeh, et al., “Visual physiology of the layer 4 cortical circuit in silico”, PLoS Comput. Biol. 14(11), 2018, pp. e1006535.
[263] Holler, S., G. Köstinger, K.A.C. Martin, G.F.P. Schuhknecht, and K.J. Stratford, “Structure and function of a neocortical synapse”, Nature 591(7848), 2021, pp. 111–116.
[264] Campagnola, L., S.C. Seeman, T. Chartrand, et al., “Local connectivity and synaptic dynamics in mouse and human neocortex”, Science 375(6585), 2022, pp. eabj5861.
[265] Sanfilippo, P., A.J. Kim, A. Bhukel, et al., “Mapping of multiple neurotransmitter receptor subtypes and distinct protein complexes to the connectome”, Neuron 112(6), 2024, pp. 942–958.e13.
[266] Lee, H.S., A. Ghetti, A. Pinto-Duarte, et al., “Astrocytes contribute to gamma oscillations and recognition memory”, Proc. Natl. Acad. Sci. U. S. A. 111(32), 2014, pp. E3343–52.
[267] Shen, F.Y., M.M. Harrington, L.A. Walker, H.P.J. Cheng, E.S. Boyden, and D. Cai, “Light microscopy based approach for mapping connectivity with molecular specificity”, Nat. Commun. 11(1), 2020, pp. 4632.
[268] Cadwell, C.R., A. Palasantza, X. Jiang, et al., “Electrophysiological, transcriptomic and morphologic profiling of single neurons using patch-seq”, Nature biotechnology 34(2), 2016, pp. 199–203.
[269] Fuzik, J., A. Zeisel, Z. Máté, et al., “Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes”, Nature biotechnology 34(2), 2016, pp. 175–183.
[270] Scala, F., D. Kobak, M. Bernabucci, et al., “Phenotypic variation of transcriptomic cell types in mouse motor cortex”, Nature 598(7879), 2021, pp. 144–150.
[271] Lee, B.R., A. Budzillo, K. Hadley, et al., “Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization”, Elife 10, 2021.
[272] Gouwens, N.W., S.A. Sorensen, F. Baftizadeh, et al., “Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells”, Cell 183(4), 2020, pp. 935–953.e19.
[273] Berg, J., S.A. Sorensen, J.T. Ting, et al., “Human neocortical expansion involves glutamatergic neuron diversification”, Nature 598(7879), 2021, pp. 151–158.
[274] Atanas, A.A., J. Kim, Z. Wang, et al., “Brain-wide representations of behavior spanning multiple timescales and states in C. elegans”, Cell 186(19), 2023, pp. 4134–4151.e31.
[275] Vries, S.E.J. de, J.A. Lecoq, M.A. Buice, et al., “A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex”, Nat. Neurosci. 23(1), 2020, pp. 138–151.
[276] Siegle, J.H., X. Jia, S. Durand, et al., “Survey of spiking in the mouse visual system reveals functional hierarchy”, Nature 592(7852), 2021, pp. 86–92.
[277] Leonard, M.K., L. Gwilliams, K.K. Sellers, et al., “Large-scale single-neuron speech sound encoding across the depth of human cortex”, Nature 626(7999), 2024, pp. 593–602.
[278] Khanna, A.R., W. Muñoz, Y.J. Kim, et al., “Single-neuronal elements of speech production in humans”, Nature 626(7999), 2024, pp. 603–610.
[279] Creamer, M.S., A.M. Leifer, and J.W. Pillow, “Bridging the gap between the connectome and whole-brain activity inc. Elegans, bioRxiv, 2024.
[280] Shen, F.X., M.L. Baum, N. Martinez-Martin, et al., “Returning individual research results from digital phenotyping in psychiatry”, Am. J. Bioeth. 24(2), 2024, pp. 69–90.
[281] Bugeon, S., J. Duffield, M. Dipoppa, et al., “A transcriptomic axis predicts state modulation of cortical interneurons”, Nature 607(7918), 2022, pp. 330–338.
[282] Condylis, C., A. Ghanbari, N. Manjrekar, et al., “Dense functional and molecular readout of a circuit hub in sensory cortex”, Science 375(6576), 2022, pp. eabl5981.
[283] M’Saad, O., and J. Bewersdorf, “Light microscopy of proteins in their ultrastructural context”, Nat. Commun. 11(1), 2020, pp. 3850.
[284] Zinchenko, V., J. Hugger, V. Uhlmann, D. Arendt, and A. Kreshuk, MorphoFeatures for unsupervised exploration of cell types, tissues, and organs in volume electron microscopy”, Elife 12, 2023.
[285] Gamlin, C.R., C.M. Schneider-Mizell, M. Mallory, et al., “Integrating EM and patch-seq data: Synaptic connectivity and target specificity of predicted sst transcriptomic types”, bioRxivorg, 2023.
[286] Randi, F., A.K. Sharma, S. Dvali, and A.M. Leifer, “Neural signal propagation atlas of caenorhabditis elegans”, Nature, 2023, pp. 1–9.
[287] Gouwens, N.W., J. Berg, D. Feng, et al., “Systematic generation of biophysically detailed models for diverse cortical neuron types”, Nat. Commun. 9(1), 2018, pp. 710.
[288] Billeh, Y.N., B. Cai, S.L. Gratiy, et al., “Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex”, Neuron 106(3), 2020, pp. 388–403.e18.
[289] Markram, H., E. Muller, S. Ramaswamy, et al., “Reconstruction and simulation of neocortical microcircuitry”, Cell 163(2), 2015, pp. 456–492.
[290] Zhang, Y., G. He, L. Ma, et al., “A GPU-based computational framework that bridges neuron simulation and artificial intelligence”, Nat. Commun. 14(1), 2023, pp. 5798.
[291] Dura-Bernal, S., S.A. Neymotin, B.A. Suter, et al., “Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics”, Cell Rep. 42(6), 2023, pp. 112574.
[292] Hagen, E., D. Dahmen, M.L. Stavrinou, et al., “Hybrid scheme for modeling local field potentials from point-neuron networks”, Cereb. Cortex 26(12), 2016, pp. 4461–4496.
[293] Rimehaug, A.E., A.J. Stasik, E. Hagen, et al., “Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex”, Elife 12, 2023.
[294] Stevens, R., and G. Orr, Bioimaging capabilities to enable mapping of the neural connections in a complex brain, US Department of Energy (USDOE), Washington DC (United States), 2020.
[295] Simeon, Q., A. Kashyap, K.P. Kording, and E.S. Boyden, “Homogenized \(\textit{C. elegans}\) neural activity and connectivity data”, 2024. https://arxiv.org/abs/2411.12091
[296] Wong, L., G. Grand, A.K. Lew, et al., “From word models to world models: Translating from natural language to the probabilistic language of thought”, arXiv preprint arXiv:2306.12672, 2023.
[297] Sumers, T.R., S. Yao, K. Narasimhan, and T.L. Griffiths, “Cognitive architectures for language agents”, arXiv preprint arXiv:2309.02427, 2023.
[298] Binz, M., I. Dasgupta, A.K. Jagadish, M. Botvinick, J.X. Wang, and E. Schulz, “Meta-learned models of cognition”, Behavioral and Brain Sciences 47, 2024, pp. e147.
[299] Lieder, F., and T.L. Griffiths, “Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources”, Behavioral and brain sciences 43, 2020, pp. e1.
[300] Gershman, S.J., E.J. Horvitz, and J.B. Tenenbaum, “Computational rationality: A converging paradigm for intelligence in brains, minds, and machines”, Science 349(6245), 2015, pp. 273–278.
[301] Icard, T., “Resource rationality”, Book manuscript, 2023.
[302] Newell, A., Unified theories of cognition, Harvard University Press, 1994.
[303] Spelke, E.S., What babies know: Core knowledge and composition volume 1, Oxford University Press, 2022.
[304] Chollet, F., M. Knoop, B. Landers, et al., “ARC prize 2024”, 2024.
[305] Ellis, K., C. Wong, M. Nye, et al., DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep bayesian program learning, arXiv, 2020.
[306] Chollet, F., “On the measure of intelligence”, 2019.
[307] Moskvichev, A., V.V. Odouard, and M. Mitchell, “The conceptarc benchmark: Evaluating understanding and generalization in the arc domain”, arXiv preprint arXiv:2305.07141, 2023.
[308] Wüst, A., T. Tobiasch, L. Helff, D.S. Dhami, C.A. Rothkopf, and K. Kersting, “Bongard in wonderland: Visual puzzles that still make AI go mad?”, arXiv preprint arXiv:2410.19546, 2024.
[309] Bakhtin, A., L. van der Maaten, J. Johnson, L. Gustafson, and R. Girshick, “Phyre: A new benchmark for physical reasoning”, Advances in Neural Information Processing Systems 32, 2019.
[310] Bear, D.M., E. Wang, D. Mrowca, et al., “Physion: Evaluating physical prediction from vision in humans and machines”, arXiv preprint arXiv:2106.08261, 2021.
[311] Kirfel, L., T. Icard, and T. Gerstenberg, “Inference from explanation.”, Journal of Experimental Psychology: General 151(7), 2022, pp. 1481.
[312] Sun, J.J., A. Ulmer, D. Chakraborty, et al., “The MABe22 benchmarks for representation learning of multi-agent behavior”, arXiv preprint arXiv:2207.10553, 2022.
[313] Smith, M.L., J.D. Davidson, B. Wild, D.M. Dormagen, T. Landgraf, and I.D. Couzin, “Behavioral variation across the days and lives of honey bees”, Iscience 25(9), 2022.
[314] Matzner, S., T. Warfel, and R. Hull, “ThermalTracker-3D: A thermal stereo vision system for quantifying bird and bat activity at offshore wind energy sites”, Ecological Informatics 57, 2020, pp. 101069.
[315] Van Horn, G., S. Branson, R. Farrell, et al., “Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection”, Proceedings of the IEEE conference on computer vision and pattern recognition, (2015), 595–604.
[316] Koger, B., A. Deshpande, J.T. Kerby, J.M. Graving, B.R. Costelloe, and I.D. Couzin, “Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision”, Journal of Animal Ecology, 2023.
[317] Naik, H., A.H.H. Chan, J. Yang, et al., “3D-POP–an automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture”, arXiv preprint arXiv:2303.13174, 2023.
[318] Allen, K., F. Brändle, M. Botvinick, et al., “Using games to understand the mind”, Nature Human Behaviour, 2024, pp. 1–9.
[319] Mnih, V., N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual attention”, 2014.
[320] Badia, A.P., B. Piot, S. Kapturowski, et al., “Agent57: Outperforming the atari human benchmark”, International conference on machine learning, PMLR (2020), 507–517.
[321] Xue, C., V. Pinto, C. Gamage, E. Nikonova, P. Zhang, and J. Renz, “Phy-q as a measure for physical reasoning intelligence”, Nature Machine Intelligence 5(1), 2023, pp. 83–93.
[322] Das, R., J.B. Tenenbaum, A. Solar-Lezama, and Z. Tavares, “Combining functional and automata synthesis to discover causal reactive programs”, Proceedings of the ACM on Programming Languages 7(POPL), 2023, pp. 1628–1658.
[323] Chowdhary, S., I. Iacopini, and F. Battiston, “Quantifying human performance in chess”, Scientific Reports 13(1), 2023, pp. 2113.
[324] Meta Fundamental AI Research Diplomacy Team (FAIR)†, A. Bakhtin, N. Brown, et al., “Human-level play in the game of diplomacy by combining language models with strategic reasoning”, Science 378(6624), 2022, pp. 1067–1074.
[325] Russek, E., D. Acosta-Kane, B. van Opheusden, M.G. Mattar, and T. Griffiths, “Time spent thinking in online chess reflects the value of computation”, PsyArXiv, 2022.
[326] Gao, P., and S. Ganguli, “On simplicity and complexity in the brave new world of large-scale neuroscience”, Curr. Opin. Neurobiol. 32, 2015, pp. 148–155.
[327] Krakauer, J.W., A.A. Ghazanfar, A. Gomez-Marin, M.A. MacIver, and D. Poeppel, “Neuroscience needs behavior: Correcting a reductionist bias”, Neuron 93(3), 2017, pp. 480–490.
[328] Mobbs, D., P.C. Trimmer, D.T. Blumstein, and P. Dayan, “Foraging for foundations in decision neuroscience: Insights from ethology”, Nat. Rev. Neurosci. 19(7), 2018, pp. 419–427.
[329] Hall-McMaster, S., and F. Luyckx, “Revisiting foraging approaches in neuroscience”, Cogn. Affect. Behav. Neurosci. 19(2), 2019, pp. 225–230.
[330] Pinto, L., K. Rajan, B. DePasquale, S.Y. Thiberge, D.W. Tank, and C.D. Brody, “Task-dependent changes in the large-scale dynamics and necessity of cortical regions”, Neuron 104(4), 2019, pp. 810–824.e9.
[331] Miller, C.T., D. Gire, K. Hoke, et al., “Natural behavior is the language of the brain”, Curr. Biol. 32(10), 2022, pp. R482–R493.
[332] Dennis, E.J., A. El Hady, A. Michaiel, et al., “Systems neuroscience of natural behaviors in rodents”, J. Neurosci. 41(5), 2021, pp. 911–919.
[333] Niv, Y., “The primacy of behavioral research for understanding the brain”, Behav. Neurosci. 135(5), 2021, pp. 601–609.
[334] Driscoll, L.N., K. Shenoy, and D. Sussillo, “Flexible multitask computation in recurrent networks utilizes shared dynamical motifs”, Nat. Neurosci. 27(7), 2024, pp. 1349–1363.
[335] Peterson, J.C., D.D. Bourgin, M. Agrawal, D. Reichman, and T.L. Griffiths, “Using large-scale experiments and machine learning to discover theories of human decision-making”, Science 372(6547), 2021, pp. 1209–1214.
[336] Binz, M., E. Akata, M. Bethge, et al., “Centaur: A foundation model of human cognition”, arXiv preprint arXiv:2410.20268, 2024.
[337] Strauch, C., C.-A. Wang, W. Einhäuser, S. Van der Stigchel, and M. Naber, “Pupillometry as an integrated readout of distinct attentional networks”, Trends in Neurosciences 45(8), 2022, pp. 635–647.
[338] Sirois, S., and J. Brisson, “Pupillometry”, Wiley Interdisciplinary Reviews: Cognitive Science 5(6), 2014, pp. 679–692.
[339] Fan, Z., Y. Zhu, Y. He, Q. Sun, H. Liu, and J. He, “Deep learning on monocular object pose detection and tracking: A comprehensive overview”, ACM Computing Surveys 55(4), 2022, pp. 1–40.
[340] Kendall, A., M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization”, Proceedings of the IEEE international conference on computer vision, (2015), 2938–2946.
[341] Freer, C.E., D.M. Roy, and J.B. Tenenbaum, “Towards common-sense reasoning via conditional simulation: Legacies of turing in artificial intelligence.”, Turing’s Legacy 42, 2014, pp. 195–252.
[342] Goodman, N., V. Mansinghka, D.M. Roy, K. Bonawitz, and J.B. Tenenbaum, “Church: A language for generative models”, arXiv preprint arXiv:1206.3255, 2012.
[343] Carpenter, B., A. Gelman, M.D. Hoffman, et al., “Stan: A probabilistic programming language”, Journal of statistical software 76, 2017.
[344] Goodman, N.D., and A. Stuhlmüller, The Design and Implementation of Probabilistic Programming Languages, 2014.
[345] Abril-Pla, O., V. Andreani, C. Carroll, et al., “PyMC: A modern, and comprehensive probabilistic programming framework in python”, PeerJ Computer Science 9, 2023, pp. e1516.
[346] Bingham, E., J.P. Chen, M. Jankowiak, et al., “Pyro: Deep universal probabilistic programming”, Journal of machine learning research 20(28), 2019, pp. 1–6.
[347] Phan, D., N. Pradhan, and M. Jankowiak, “Composable effects for flexible and accelerated probabilistic programming in NumPyro”, arXiv preprint arXiv:1912.11554, 2019.
[348] Ge, H., K. Xu, and Z. Ghahramani, “Turing: A language for flexible probabilistic inference”, International conference on artificial intelligence and statistics, PMLR (2018), 1682–1690.
[349] Cusumano-Towner, M.F., F.A. Saad, A.K. Lew, and V.K. Mansinghka, “Gen: A general-purpose probabilistic programming system with programmable inference”, Proceedings of the 40th acm sigplan conference on programming language design and implementation, (2019), 221–236.
[350] Meent, J.-W. van de, B. Paige, H. Yang, and F. Wood, “An introduction to probabilistic programming”, arXiv preprint arXiv:1809.10756, 2018.
[351] Chaudhuri, S., K. Ellis, O. Polozov, et al., “Neurosymbolic programming”, Foundations and Trends in Programming Languages 7(3), 2021, pp. 158–243.
[352] Botvinick, M., and M. Toussaint, “Planning as inference”, Trends in cognitive sciences 16(10), 2012, pp. 485–488.
[353] Milli, S., F. Lieder, and T.L. Griffiths, “A rational reinterpretation of dual-process theories”, Cognition 217, 2021, pp. 104881.
[354] Pearl, J., “The algorithmization of counterfactuals”, Annals of Mathematics and Artificial Intelligence 61, 2011, pp. 29–39.
[355] Solway, A., and M.M. Botvinick, “Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates.”, Psychological review 119(1), 2012, pp. 120.
[356] Koller, D., “Probabilistic graphical models: Principles and techniques”, 2009.
[357] Tavares, Z., J. Koppel, X. Zhang, R. Das, and A. Solar-Lezama, “A language for counterfactual generative models”, International conference on machine learning, PMLR (2021), 10173–10182.
[358] Dawid, A.P., “Influence diagrams for causal modelling and inference”, International Statistical Review 70(2), 2002, pp. 161–189.
[359] MacDermott, M., T. Everitt, and F. Belardinelli, “Characterising decision theories with mechanised causal graphs”, 2023. https://arxiv.org/abs/2307.10987
[360] Hammond, L., J. Fox, T. Everitt, R. Carey, A. Abate, and M. Wooldridge, Reasoning about causality in games (abstract reprint), Proceedings of the AAAI Conference on Artificial Intelligence 38(20), 2024, pp. 22697–22697.
[361] Levine, S., “Reinforcement learning and control as probabilistic inference: Tutorial and review”, arXiv [cs.LG], 2018.
[362] Everitt, T., R. Kumar, V. Krakovna, and S. Legg, “Modeling AGI safety frameworks with causal influence diagrams”, 2019. https://arxiv.org/abs/1906.08663
[363] Kenton, Z., R. Kumar, S. Farquhar, J. Richens, M. MacDermott, and T. Everitt, Discovering agents, Artificial Intelligence 322, 2023, pp. 103963.
[364] Richens, J., and T. Everitt, “Robust agents learn causal world models”, 2024. https://arxiv.org/abs/2402.10877
[365] Everitt, T., M. Hutter, R. Kumar, and V. Krakovna, “Reward tampering problems and solutions in reinforcement learning: A causal influence diagram perspective”, Synthese 198(Suppl 27), 2021, pp. 6435–6467.
[366] Tavares, Z., X. Zhang, E. Minaysan, J. Burroni, R. Ranganath, and A.S. Lezama, “The random conditional distribution for higher-order probabilistic inference”, arXiv preprint arXiv:1903.10556, 2019.
[367] Stuhlmüller, A., and N.D. Goodman, “Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs”, Cognitive Systems Research 28, 2014, pp. 80–99.
[368] Evans, O., A. Stuhlmüller, J. Salvatier, and D. Filan, Modeling Agents with Probabilistic Programs, 2017.
[369] Goodman, N.D., J.B. Tenenbaum, and T.P. Contributors, Probabilistic Models of Cognition, 2016.
[370] Belle, V., and L. De Raedt, “Semiring programming: A framework for search, inference and learning”, CoRR, abs/1609.06954, 2016.
[371] Hinton, G.E., P. Dayan, B.J. Frey, and R.M. Neal, “The" wake-sleep" algorithm for unsupervised neural networks”, Science 268(5214), 1995, pp. 1158–1161.
[372] Stuhlmüller, A., J. Taylor, and N. Goodman, “Learning stochastic inverses”, Advances in neural information processing systems 26, 2013.
[373] Piantadosi, S.T., and R.A. Jacobs, “Four problems solved by the probabilistic language of thought”, Current Directions in Psychological Science 25(1), 2016, pp. 54–59.
[374] Neal, R.M., “New monte carlo methods based on hamiltonian dynamics”, MaxEnt workshop, number july, (2011).
[375] Delaloye, S., and P.E. Holtzheimer, “Deep brain stimulation in the treatment of depression”, Dialogues Clin. Neurosci. 16(1), 2014, pp. 83–91.
[376] Holtzheimer, P.E., and H.S. Mayberg, “Deep brain stimulation for psychiatric disorders”, Annu. Rev. Neurosci. 34(1), 2011, pp. 289–307.
[377] Oxley, T.J., N.L. Opie, S.E. John, et al., “Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity”, Nat. Biotechnol. 34(3), 2016, pp. 320–327.
[378] Musk, E., and Neuralink, “An integrated brain-machine interface platform with thousands of channels”, bioRxiv, 2019, pp. 703801.
[379] Sahasrabuddhe, K., A.A. Khan, A.P. Singh, et al., “The argo: A 65,536 channel recording system for high density neural recordingin vivo, bioRxiv, 2020, pp. 2020.07.17.209403.
[380] Paulk, A.C., Y. Kfir, A.R. Khanna, et al., “Large-scale neural recordings with single neuron resolution using neuropixels probes in human cortex”, Nat. Neurosci. 25(2), 2022, pp. 252–263.
[381] Nishimoto, S., A.T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J.L. Gallant, “Reconstructing visual experiences from brain activity evoked by natural movies”, Curr. Biol. 21(19), 2011, pp. 1641–1646.
[382] Scotti, P., A. Banerjee, J. Goode, et al., “Reconstructing the mind’s eye: fMRI-to-image with contrastive learning and diffusion priors”, Neural information processing systems, (2023).
[383] Christiano, P.F., J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences”, Advances in neural information processing systems 30, 2017.
[384] Fong, R.C., W.J. Scheirer, and D.D. Cox, “Using human brain activity to guide machine learning”, Sci. Rep. 8(1), 2018, pp. 5397.
[385] Nisbett, R.E., and T.D. Wilson, “Telling more than we can know: Verbal reports on mental processes”, Psychol. Rev. 84(3), 1977, pp. 231.
[386] Lightman, H., V. Kosaraju, Y. Burda, et al., “Let’s verify step by step”, arXiv [cs.LG], 2023.
[387] Luo, L., Y. Liu, R. Liu, et al., “Improve mathematical reasoning in language models by automated process supervision”, arXiv [cs.CL], 2024.
[388] Hendrycks, D., C. Burns, S. Basart, et al., “Aligning AI with shared human values”, arXiv [cs.CY], 2020.
[389] Sharma, M., M. Tong, T. Korbak, et al., “Towards understanding sycophancy in language models”, arXiv [cs.CL], 2023.
[390] Shen, T., R. Jin, Y. Huang, et al., “Large language model alignment: A survey”, arXiv [cs.CL], 2023.
[391] Phuong, M., M. Aitchison, E. Catt, et al., “Evaluating frontier models for dangerous capabilities”, arXiv [cs.LG], 2024.
[392] Müller, V.C., “Ethics of artificial intelligence and robotics”, 2020.
[393] OpenAI, “Introducing OpenAI o1, 2024.
[394] Abdin, M., J. Aneja, H. Awadalla, et al., “Phi-3 technical report: A highly capable language model locally on your phone”, arXiv [cs.CL], 2024.
[395] Branwen, G., WBE and DRL: A middle way of imitation learning from the human brain”, 2018.
[396] Sucholutsky, I., and T.L. Griffiths, “Alignment with human representations supports robust few-shot learning”, 2023.
[397] Muttenthaler, L., L. Linhardt, J. Dippel, et al., “Improving neural network representations using human similarity judgments”, Neural information processing systems, (2023).
[398] Muttenthaler, L., K. Greff, F. Born, et al., “Aligning machine and human visual representations across abstraction levels”, arXiv [cs.CV], 2024.
[399] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ImageNet: A large-scale hierarchical image database”, 2009 IEEE conference on computer vision and pattern recognition, IEEE (2009), 248–255.
[400] Fellbaum, C., WordNet and wordnets”, In K. Brown, ed., Encyclopedia of language and linguistics. Elsevier, 2005.
[401] Mehrer, J., C.J. Spoerer, E.C. Jones, N. Kriegeskorte, and T.C. Kietzmann, “An ecologically motivated image dataset for deep learning yields better models of human vision”, Proc. Natl. Acad. Sci. U. S. A. 118(8), 2021, pp. e2011417118.
[402] Huh, M., B. Cheung, T. Wang, and P. Isola, “The platonic representation hypothesis”, arXiv [cs.LG], 2024.
[403] Gauthaman, R.M., B. Ménard, and M.F. Bonner, “Universal scale-free representations in human visual cortex”, arXiv [q-bio.NC], 2024.
[404] Roads, B.D., and B.C. Love, “Enriching ImageNet with human similarity judgments and psychological embeddings”, 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR), IEEE (2021).
[405] Hebart, M.N., O. Contier, L. Teichmann, et al., THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior”, Elife 12, 2023.
[406] Borghesani, V., J. Armoza, M.N. Hebart, P. Bellec, and S.M. Brambati, “The three terms task - an open benchmark to compare human and artificial semantic representations”, Sci Data 10(1), 2023, pp. 117.
[407] Peterson, J.C., R.M. Battleday, T.L. Griffiths, and O. Russakovsky, “Human uncertainty makes classification more robust”, arXiv [cs.CV], 2019.
[408] Xu, B., A. Bikakis, D. Onah, A. Vlachidis, and L. Dickens, “Measuring error alignment for decision-making systems”, arXiv [cs.AI], 2024.
[409] Klerke, S., Y. Goldberg, and A. Søgaard, “Improving sentence compression by learning to predict gaze”, arXiv [cs.CL], 2016.
[410] Ishibashi, T., Y. Sugano, and Y. Matsushita, “Gaze-guided image classification for reflecting perceptual class ambiguity”, Adjunct proceedings of the 31st annual ACM symposium on user interface software and technology, ACM (2018).
[411] Linsley, D., D. Shiebler, S. Eberhardt, and T. Serre, “Learning what and where to attend”, arXiv [cs.CV], 2018.
[412] Linsley, D., P. Feng, T. Boissin, et al., “Adversarial alignment: Breaking the trade-off between the strength of an attack and its relevance to human perception”, 2023.
[413] Lindsey, J.W., and S. Lippl, “Implicit regularization of multi-task learning and finetuning in overparameterized neural networks”, 2023.
[414] Itti, L., C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis”, IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1998, pp. 1254–1259.
[415] Mathias, S., D. Kanojia, A. Mishra, and P. Bhattacharyya, “A survey on using gaze behaviour for natural language processing”, arXiv [cs.CL], 2021.
[416] Kiegeland, S., D.R. Reich, R. Cotterell, L.A. Jäger, and E. Wilcox, “The pupil becomes the master: Eye-tracking feedback for tuning LLMs, ICML 2024 workshop on LLMs and cognition, (2024).
[417] Hinton, G., O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network”, arXiv [stat.ML], 2015.
[418] Kriegeskorte, N., M. Mur, and P. Bandettini, “Representational similarity analysis - connecting the branches of systems neuroscience”, Front. Syst. Neurosci. 2, 2008, pp. 4.
[419] Kornblith, S., M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural network representations revisited”, International conference on machine learning, PMLR (2019), 3519–3529.
[420] Xie, Y., A. Goyal, W. Zheng, et al., “Monte carlo tree search boosts reasoning via iterative preference learning”, arXiv [cs.AI], 2024.
[421] Fyshe, A., P.P. Talukdar, B. Murphy, and T.M. Mitchell, “Interpretable semantic vectors from a joint model of brain- and text-based meaning”, Proc. Conf. Assoc. Comput. Linguist. Meet. 2014, 2014, pp. 489–499.
[422] Huth, A., S. Nishimoto, A. Vu, and J. Gallant, “A continuous semantic space describes the representation of thousands of object and action categories across the human brain”, Neuron 76(6), 2012, pp. 1210–1224.
[423] Tang, J., A. LeBel, S. Jain, and A.G. Huth, “Semantic reconstruction of continuous language from non-invasive brain recordings”, 2022.
[424] Antonello, R., A. Vaidya, and A.G. Huth, “Scaling laws for language encoding models in fMRI, arXiv [cs.CL], 2023.
[425] Kohler, J., M.C. Ottenhoff, S. Goulis, et al., “Synthesizing speech from intracranial depth electrodes using an encoder-decoder framework”, Neurons, Behavior, Data analysis, and Theory, 2022.
[426] Moussa, O., D. Klakow, and M. Toneva, “Improving semantic understanding in speech language models via brain-tuning”, arXiv [cs.CL], 2024.
[427] Meek, A., A. Karpov, S.H. Cho, R. Koopmanschap, L. Farnik, and B.-I. Cirstea, “Inducing human-like biases in moral reasoning language models”, UniReps: 2nd edition of the workshop on unifying representations in neural models, (2024).
[428] Saxe, R., and N. Kanwisher, “People thinking about thinking people. The role of the temporo-parietal junction in ‘theory of mind’, Neuroimage 19(4), 2003, pp. 1835–1842.
[429] Sato, M., K. Tomeoka, I. Horiguchi, K. Arulkumaran, R. Kanai, and S. Sasai, “Scaling law in neural data: Non-invasive speech decoding with 175 hours of EEG data”, arXiv [q-bio.NC], 2024.
[430] Allen, E.J., G. St-Yves, Y. Wu, et al., “A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence”, Nat. Neurosci. 25(1), 2022, pp. 116–126.
[431] Freteault, M., M. Le Clei, L. Tetrel, P. Bellec, and N. Farrugia, “Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalizable improvements in brain encoding and downstream tasks”, bioRxivorg, 2024.
[432] Ariely, D., and G.S. Berns, “Neuromarketing: The hope and hype of neuroimaging in business”, Nat. Rev. Neurosci. 11(4), 2010, pp. 284–292.
[433] Coupé, C., Y.M. Oh, D. Dediu, and F. Pellegrino, “Different languages, similar encoding efficiency: Comparable information rates across the human communicative niche”, Sci. Adv. 5(9), 2019, pp. eaaw2594.
[434] Zheng, J., and M. Meister, “The unbearable slowness of being”, arXiv [q-bio.NC], 2024.
[435] Willett, F.R., D.T. Avansino, L.R. Hochberg, J.M. Henderson, and K.V. Shenoy, “High-performance brain-to-text communication via handwriting”, Nature 593(7858), 2021, pp. 249–254.
[436] Willett, F.R., E.M. Kunz, C. Fan, et al., “A high-performance speech neuroprosthesis”, Nature 620(7976), 2023, pp. 1031–1036.
[437] Neuralink, PRIME study progress update — user experience”, 2024.
[438] Scotti, P.S., M. Tripathy, C.K.T. Villanueva, et al., MindEye2: Shared-subject models enable fMRI-to-image with 1 hour of data”, arXiv [cs.CV], 2024.
[439] Antonello, R., N. Sarma, J. Tang, J. Song, and A. Huth, “How many bytes can you take out of brain-to-text decoding?”, arXiv [cs.CL], 2024.
[440] Parthasarathy, N., J. Soetedjo, S. Panchavati, et al., “High performance P300 spellers using GPT2 word prediction with cross-subject training”, arXiv [cs.CL], 2024.
[441] Shi, N., Y. Miao, C. Huang, et al., “Estimating and approaching the maximum information rate of noninvasive visual brain-computer interface”, Neuroimage 289(120548), 2024, pp. 120548.
[442] Li, X., J. Chen, N. Shi, et al., “A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG, Expert Syst. Appl. 223(119736), 2023, pp. 119736.
[443] Kernel, “Kernel flux and flow”, 2021.
[444] Tripathy, K., Z.E. Markow, A.K. Fishell, et al., “Decoding visual information from high-density diffuse optical tomography neuroimaging data”, Neuroimage 226(117516), 2021, pp. 117516.
[445] Shin, J., J. Kwon, and C.-H. Im, “A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state”, Front. Neuroinform. 12, 2018, pp. 5.
[446] Norman, S.L., D. Maresca, V.N. Christopoulos, et al., “Single-trial decoding of movement intentions using functional ultrasound neuroimaging”, Neuron 109(9), 2021, pp. 1554–1566.e4.
[447] Jung, T., N. Zeng, J.D. Fabbri, et al., “Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device”, bioRxivorg, 2024, pp. 2024.05.17.594333.
[448] Allen, K.R., F. Brändle, M.M. Botvinick, et al., “Using games to understand the mind”, 2023.
[449] Spiers, H.J., A. Coutrot, and M. Hornberger, “Explaining world-wide variation in navigation ability from millions of people: Citizen science project sea hero quest”, Top. Cogn. Sci. 15(1), 2023, pp. 120–138.
[450] Devlin, S., R. Georgescu, I. Momennejad, et al., “Navigation turing test (NTT): Learning to evaluate human-like navigation”, 2021.
[451] Cross, L., J. Cockburn, Y. Yue, and J.P. O’Doherty, “Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments”, Neuron 109(4), 2021, pp. 724–738.e7.
[452] Kemtur, A., F. Paugam, B. Pinsard, et al., “Behavioral imitation with artificial neural networks leads to personalized models of brain dynamics during videogame play”, bioRxiv, 2023, pp. 2023.10.28.564546.
[453] Zhang, T., “Modelling navigation representations during naturalistic driving”, 2021.
[454] Hafner, D., J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse domains through world models”, 2023.
[455] Bard, N., J.N. Foerster, S. Chandar, et al., “The hanabi challenge: A new frontier for AI research”, arXiv [cs.LG], 2019.
[456] Brown, N., A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep reinforcement learning and search for imperfect-information games”, arXiv [cs.GT], 2020.
[457] Pan, A., J.S. Chan, A. Zou, et al., “Do the rewards justify the means? Measuring trade-offs between rewards and ethical behavior in the MACHIAVELLI benchmark”, arXiv [cs.LG], 2023.
[458] Marblestone, A.H., G. Wayne, and K.P. Kording, “Toward an integration of deep learning and neuroscience”, Front. Comput. Neurosci. 10, 2016, pp. 94.
[459] Arora, S., and P. Doshi, “A survey of inverse reinforcement learning: Challenges, methods and progress”, arXiv [cs.LG], 2018.
[460] Sarma, G., and N.J. Hay, “Mammalian value systems”, Informatica (Vilnius) abs/1607.08289(4), 2016.
[461] Sarma, G.P., N.J. Hay, and A. Safron, AI safety and reproducibility: Establishing robust foundations for the neuropsychology of human values”, In Developments in language theory. Springer International Publishing, Cham, 2018, 507–512.
[462] Collins, K.M., I. Sucholutsky, U. Bhatt, et al., “Building machines that learn and think with people”, arXiv [cs.HC], 2024.
[463] Yamins, D.L.K., and J.J. DiCarlo, “Using goal-driven deep learning models to understand sensory cortex”, Nat. Neurosci. 19(3), 2016, pp. 356–365.
[464] Doerig, A., R. Sommers, K. Seeliger, et al., “The neuroconnectionist research programme”, 2022.
[465] Yamins, D.L.K., H. Hong, C.F. Cadieu, E.A. Solomon, D. Seibert, and J.J. DiCarlo, “Performance-optimized hierarchical models predict neural responses in higher visual cortex”, Proceedings of the national academy of sciences 111(23), 2014, pp. 8619–8624.
[466] Khaligh-Razavi, S.-M., and N. Kriegeskorte, “Deep supervised, but not unsupervised, models may explain IT cortical representation”, PLoS Comput. Biol. 10(11), 2014, pp. e1003915.
[467] Sussillo, D., M.M. Churchland, M.T. Kaufman, and K.V. Shenoy, “A neural network that finds a naturalistic solution for the production of muscle activity”, Nat. Neurosci. 18(7), 2015, pp. 1025–1033.
[468] Mineault, P., S. Bakhtiari, B. Richards, and C. Pack, “Your head is there to move you around: Goal-driven models of the primate dorsal pathway”, Neural information processing systems (NeurIPS), (2021).
[469] Nayebi, A., R. Rajalingham, M. Jazayeri, and G.R. Yang, “Neural foundations of mental simulation: Future prediction of latent representations on dynamic scenes”, Neural information processing systems, (2023).
[470] Conwell, C., J.S. Prince, K.N. Kay, G.A. Alvarez, and T. Konkle, “What can 1.8 billion regressions tell us about the pressures shaping high-level visual representation in brains and machines?”, 2022.
[471] Conwell, C., J.S. Prince, K.N. Kay, G.A. Alvarez, and T. Konkle, “A large-scale examination of inductive biases shaping high-level visual representation in brains and machines”, Nat. Commun. 15(1), 2024, pp. 9383.
[472] Rideaux, R., and A.E. Welchman, “But still it moves: Static image statistics underlie how we see motion”, Journal of Neuroscience 40(12), 2020, pp. 2538–2552.
[473] Bakhtiari, S., P. Mineault, T. Lillicrap, C. Pack, and B. Richards, “The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning”, Neural information processing systems (NeurIPS), (2021).
[474] Vafaii, H., J. Yates, and D. Butts, “Hierarchical VAEs provide a normative account of motion processing in the primate brain”, Neural information processing systems, (2023).
[475] Chang, L., B. Egger, T. Vetter, and D.Y. Tsao, “Explaining face representation in the primate brain using different computational models”, Curr. Biol. 31(13), 2021, pp. 2785–2795.e4.
[476] Bonner, M.F., and R.A. Epstein, “Object representations in the human brain reflect the co-occurrence statistics of vision and language”, Nat. Commun. 12(1), 2021, pp. 4081.
[477] Lindsay, G.W., and K.D. Miller, “How biological attention mechanisms improve task performance in a large-scale visual system model”, Elife 7, 2018.
[478] Lotter, W., G. Kreiman, and D. Cox, “A neural network trained for prediction mimics diverse features of biological neurons and perception”, Nat Mach Intell 2(4), 2020, pp. 210–219.
[479] Hannagan, T., A. Agrawal, L. Cohen, and S. Dehaene, “Emergence of a compositional neural code for written words: Recycling of a convolutional neural network for reading”, Proceedings of the National Academy of Sciences 118(46), 2021.
[480] Kell, A.J.E., D.L.K. Yamins, E.N. Shook, S.V. Norman-Haignere, and J.H. McDermott, “A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy”, Neuron 98(3), 2018, pp. 630–644.
[481] Francl, A., and J.H. McDermott, “Deep neural network models of sound localization reveal how perception is adapted to real-world environments”, Nat. Hum. Behav. 6(1), 2022, pp. 111–133.
[482] Caucheteux, C., and J.-R. King, “Brains and algorithms partially converge in natural language processing”, Commun Biol 5(1), 2022, pp. 1–10.
[483] Fedorenko, E., I.A. Blank, M. Siegelman, and Z. Mineroff, “Lack of selectivity for syntax relative to word meanings throughout the language network”, Cognition 203(104348), 2020, pp. 104348.
[484] Caucheteux, C., A. Gramfort, and J.-R. King, “Evidence of a predictive coding hierarchy in the human brain listening to speech”, Nat Hum Behav, 2023, pp. 1–12.
[485] Schrimpf, M., I.A. Blank, G. Tuckute, et al., “The neural architecture of language: Integrative modeling converges on predictive processing”, Proceedings of the National Academy of Sciences 118(45), 2021, pp. e2105646118.
[486] Rajan, K., C.D. Harvey, and D.W. Tank, “Recurrent network models of sequence generation and memory”, Neuron 90(1), 2016, pp. 128–142.
[487] Pandarinath, C., P. Nuyujukian, C.H. Blabe, et al., “High performance communication by people with paralysis using an intracortical brain-computer interface”, Elife 6, 2017, pp. e18554.
[488] Russo, A.A., R. Khajeh, S.R. Bittner, et al., “Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation”, Neuron 107(4), 2020, pp. 745–758.e6.
[489] Dasgupta, S., C.F. Stevens, and S. Navlakha, “A neural algorithm for a fundamental computing problem”, Science 358(6364), 2017, pp. 793–796.
[490] Wang, P.Y., Y. Sun, R. Axel, L.F. Abbott, and G.R. Yang, “Evolving the olfactory system with machine learning”, bioRxiv, 2021, pp. 2021.04.15.439917.
[491] Taleb, F., M.S. Vasco, N. Rajabi, M. Björkman, and D. Kragic, “Can foundation models smell like humans?”, (2024).
[492] Banino, A., C. Barry, B. Uria, et al., “Vector-based navigation using grid-like representations in artificial agents”, Nature 557(7705), 2018, pp. 429–433.
[493] Cueva, C.J., and X.-X. Wei, “Emergence of grid-like representations by training recurrent neural networks to perform spatial localization”, arXiv [q-bio.NC], 2018.
[494] Whittington, J.C.R., T.H. Muller, S. Mark, et al., “The tolman-eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation”, Cell 183(5), 2020, pp. 1249–1263.e23.
[495] Nayebi, A., A. Attinger, M.G. Campbell, et al., “Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks”, 2021.
[496] Sorscher, B., G.C. Mel, S.A. Ocko, L.M. Giocomo, and S. Ganguli, “A unified theory for the computational and mechanistic origins of grid cells”, Neuron 111(1), 2023, pp. 121–137.e13.
[497] Stachenfeld, K.L., M.M. Botvinick, and S.J. Gershman, “The hippocampus as a predictive map”, Nat. Neurosci. 20(11), 2017, pp. 1643–1653.
[498] Fang, C., D. Aronov, L. Abbott, and E.L. Mackevicius, “Neural learning rules for generating flexible predictions and computing the successor representation”, elife 12, 2023, pp. e80680.
[499] George, T.M., K. Stachenfeld, C. Barry, C. Clopath, and T. Fukai, “A generative model of the hippocampal formation trained with theta driven local learning rules”, Neural information processing systems, (2023).
[500] Bono, J., S. Zannone, V. Pedrosa, and C. Clopath, “Learning predictive cognitive maps with spiking neurons during behavior and replays”, Elife 12, 2023, pp. e80671.
[501] Whittington, J.C.R., J. Warren, and T.E.J. Behrens, “Relating transformers to models and neural representations of the hippocampal formation”, arXiv [cs.NE], 2021.
[502] Jensen, K.T., G. Hennequin, and M.G. Mattar, “A recurrent network model of planning explains hippocampal replay and human behavior”, Nat. Neurosci. 27(7), 2024, pp. 1340–1348.
[503] Mante, V., D. Sussillo, K.V. Shenoy, and W.T. Newsome, “Context-dependent computation by recurrent dynamics in prefrontal cortex”, Nature 503(7474), 2013, pp. 78–84.
[504] Wang, J.X., Z. Kurth-Nelson, D. Kumaran, et al., “Prefrontal cortex as a meta-reinforcement learning system”, Nat. Neurosci. 21(6), 2018, pp. 860–868.
[505] Yang, G.R., M.R. Joglekar, H.F. Song, W.T. Newsome, and X.-J. Wang, “Task representations in neural networks trained to perform many cognitive tasks”, Nat. Neurosci. 22(2), 2019, pp. 297–306.
[506] Summerfield, C., F. Luyckx, and H. Sheahan, “Structure learning and the posterior parietal cortex”, Prog. Neurobiol. 184, 2020, pp. 101717.
[507] Fedorenko, E., S.T. Piantadosi, and E.A.F. Gibson, “Language is primarily a tool for communication rather than thought”, Nature 630(8017), 2024, pp. 575–586.
[508] Berrios, W., and A. Deza, Joint rotational invariance and adversarial training of a dual-stream transformer yields state of the art brain-score for area V4, arXiv, 2022.
[509] Schrimpf, M., J. Kubilius, H. Hong, et al., “Brain-score: Which artificial neural network for object recognition is most brain-like?”, BioRxiv, 2018, pp. 407007.
[510] Linsley, D., I.F.R. Rodriguez, T. Fel, et al., “Performance-optimized deep neural networks are evolving into worse models of inferotemporal visual cortex”, Neural information processing systems, (2023).
[511] Gokce, A., and M. Schrimpf, “Scaling laws for task-optimized models of the primate visual ventral stream”, arXiv [cs.LG], 2024.
[512] Chen, Z., and M.F. Bonner, “Universal dimensions of visual representation”, 2024.
[513] Antonello, R., and A. Huth, “Predictive coding or just feature discovery? An alternative account of why language models fit brain data”, Neurobiol. Lang. (Camb.) 5(1), 2024, pp. 64–79.
[514] Sexton, N.J., and B.C. Love, “Reassessing hierarchical correspondences between brain and deep networks through direct interface”, Science Advances 8(28), 2022, pp. eabm2219.
[515] Soni, A., S. Srivastava, M. Khosla, and K.P. Kording, “Conclusions about neural network to brain alignment are profoundly impacted by the similarity measure”, bioRxiv, 2024, pp. 2024.08.07.607035.
[516] Thobani, I., J. Sagastuy-Brena, A. Nayebi, R. Cao, and D.L.K. Yamins, “Inter-animal transforms as a guide to model-brain comparison”, ICLR 2024 workshop on representational alignment, (2024).
[517] Ahlert, J., T. Klein, F.A. Wichmann, and R. Geirhos, “How aligned are different alignment metrics?”, (2024).
[518] Klabunde, M., T. Wald, T. Schumacher, K. Maier-Hein, M. Strohmaier, and F. Lemmerich, ReSi: A comprehensive benchmark for representational similarity measures”, arXiv [cs.LG], 2024.
[519] Elmoznino, E., and M.F. Bonner, “High-performing neural network models of visual cortex benefit from high latent dimensionality”, 2022.
[520] Schaeffer, R., M. Khona, S. Chandra, M. Ostrow, B. Miranda, and S. Koyejo, “Position: Maximizing neural regression scores may not identify good models of the brain”, UniReps: 2nd edition of the workshop on unifying representations in neural models, (2024).
[521] Zednik, C., and F. Jäkel, “Bayesian reverse-engineering considered as a research strategy for cognitive science”, Synthese 193(12), 2016, pp. 3951–3985.
[522] Golan, T., P.C. Raju, and N. Kriegeskorte, “Controversial stimuli: Pitting neural networks against each other as models of human cognition”, Proc. Natl. Acad. Sci. U. S. A. 117(47), 2020, pp. 29330–29337.
[523] Tuckute, G., D. Finzi, E. Margalit, et al., “How to optimize neuroscience data utilization and experiment design for advancing primate visual and linguistic brain models?”, arXiv [q-bio.NC], 2024.
[524] Olshausen, B.A., and D.J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images”, Nature 381, 1996, pp. 607–609.
[525] Rao, R.P.N., and D.H. Ballard, “Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects”, Nat. Neurosci. 2(1), 1999, pp. 79–87.
[526] Agrawal, K.K., A.K. Mondal, A. Ghosh, and B.A. Richards, \(\alpha\)-ReQ : Assessing representation quality in self-supervised learning by measuring eigenspectrum decay”, (2022).
[527] Northcutt, C.G., L. Jiang, and I.L. Chuang, “Confident learning: Estimating uncertainty in dataset labels”, arXiv [stat.ML], 2019.
[528] Caballero, E., K. Gupta, I. Rish, and D. Krueger, “Broken neural scaling laws”, 2022.
[529] Kandasamy, K., W. Neiswanger, J. Schneider, B. Poczos, and E.P. Xing, “Neural architecture search with bayesian optimisation and optimal transport”, Advances in Neural Information Processing Systems 31, 2018.
[530] Schultz, W., P. Dayan, and P.R. Montague, “A neural substrate of prediction and reward”, Science 275(5306), 1997, pp. 1593–1599.
[531] Hassabis, D., D. Kumaran, C. Summerfield, and M. Botvinick, “Neuroscience-inspired artificial intelligence”, Neuron 95(2), 2017, pp. 245–258.
[532] Lindsay, G., Models of the mind: How physics, engineering and mathematics have shaped our understanding of the brain, Bloomsbury Sigma, 1. Aufl, 2021.
[533] Schultz, W., “Reward functions of the basal ganglia”, J. Neural Transm. 123(7), 2016, pp. 679–693.
[534] Pessiglione, M., B. Seymour, G. Flandin, R.J. Dolan, and C.D. Frith, “Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans”, Nature 442(7106), 2006, pp. 1042–1045.
[535] Huys, Q.J.M., T.V. Maia, and M.J. Frank, “Computational psychiatry as a bridge from neuroscience to clinical applications”, Nat. Neurosci. 19(3), 2016, pp. 404–413.
[536] Lee, S.W., S. Shimojo, and J.P. O’Doherty, “Neural computations underlying arbitration between model-based and model-free learning”, Neuron 81(3), 2014, pp. 687–699.
[537] Lowet, A.S., Q. Zheng, S. Matias, J. Drugowitsch, and N. Uchida, “Distributional reinforcement learning in the brain”, Trends Neurosci. 43(12), 2020, pp. 980–997.
[538] Muller, T.H., J.L. Butler, S. Veselic, et al., “Distributional reinforcement learning in prefrontal cortex”, Nat. Neurosci. 27(3), 2024, pp. 403–408.
[539] Lee, R.S., Y. Sagiv, B. Engelhard, I.B. Witten, and N.D. Daw, “A feature-specific prediction error model explains dopaminergic heterogeneity”, Nat. Neurosci. 27(8), 2024, pp. 1574–1586.
[540] Barto, A., R.L. Lewis, and S. Singh, “Where do rewards come from”, 31, 2009.
[541] Keramati, M., and B. Gutkin, “Homeostatic reinforcement learning for integrating reward collection and physiological stability”, Elife 3, 2014.
[542] Juechems, K., and C. Summerfield, “Where does value come from?”, Trends Cogn. Sci. 23(10), 2019, pp. 836–850.
[543] Millidge, B., M. Walton, and R. Bogacz, “Reward bases: Instantaneous reward revaluation with temporal difference learning”, bioRxiv, 2022, pp. 2022.04.14.488361.
[544] Weber, L., D.M. Yee, D.M. Small, and F.H. Petzschner, “Rethinking reinforcement learning: The interoceptive origin of reward”, PsyArXiv, 2024.
[545] Li, F., J.W. Lindsey, E.C. Marin, et al., “The connectome of the adult drosophila mushroom body provides insights into function”, Elife 9, 2020.
[546] Liu, D., M. Rahman, A. Johnson, et al., A hypothalamic circuit underlying the dynamic control of social homeostasis, bioRxiv, 2023.
[547] Allsop, S.A., R. Wichmann, F. Mills, et al., “Corticoamygdala transfer of socially derived information gates observational learning”, Cell 173(6), 2018, pp. 1329–1342.
[548] Kohl, J., B.M. Babayan, N.D. Rubinstein, et al., “Functional circuit architecture underlying parental behaviour”, Nature 556(7701), 2018, pp. 326–331.
[549] Dabney, W., Z. Kurth-Nelson, N. Uchida, et al., “A distributional code for value in dopamine-based reinforcement learning”, Nature 577(7792), 2020, pp. 671–675.
[550] Byrnes, S., “Dopamine-supervised learning in mammals & fruit flies”, 2021. https://www.lesswrong.com/posts/GnmLReqNrP4CThn6/dopamine-supervised-learning-in-mammals-and-fruit-flies
[551] Sutton, R.S., and A.G. Barto, Reinforcement learning: An introduction, MIT press, 2018.
[552] Morris, M.J., J.E. Beilharz, J. Maniam, A.C. Reichelt, and R.F. Westbrook, “Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition”, Neurosci. Biobehav. Rev. 58, 2015, pp. 36–45.
[553] Ulrich, M., A. Rüger, V. Durner, G. Grön, and H. Graf, “Reward is not reward: Differential impacts of primary and secondary rewards on expectation, outcome, and prediction error in the human brain’s reward processing regions”, Neuroimage 283(120440), 2023, pp. 120440.
[554] Markman, M., E. Saruco, S. Al-Bas, et al., “Differences in discounting behavior and brain responses for food and money reward”, eNeuro 11(4), 2024.
[555] Gadagkar, V., P.A. Puzerey, R. Chen, E. Baird-Daniel, A.R. Farhang, and J.H. Goldberg, “Dopamine neurons encode performance error in singing birds”, Science 354(6317), 2016, pp. 1278–1282.
[556] Duffy, A., K.W. Latimer, J.H. Goldberg, A.L. Fairhall, and V. Gadagkar, “Dopamine neurons evaluate natural fluctuations in performance quality”, Cell reports 38(13), 2022.
[557] Roeser, A., V. Gadagkar, A. Das, P.A. Puzerey, B. Kardon, and J.H. Goldberg, “Dopaminergic error signals retune to social feedback during courtship”, Nature 623(7986), 2023, pp. 375–380.
[558] Mandelblat-Cerf, Y., L. Las, N. Denisenko, and M.S. Fee, “A role for descending auditory cortical projections in songbird vocal learning”, Elife 3, 2014.
[559] Hisey, E., M.G. Kearney, and R. Mooney, “A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning”, Nature neuroscience 21(4), 2018, pp. 589–597.
[560] Kearney, M.G., T.L. Warren, E. Hisey, J. Qi, and R. Mooney, “Discrete evaluative and premotor circuits enable vocal learning in songbirds”, Neuron 104(3), 2019, pp. 559–575.
[561] Roberts, T.F., S.M. Gobes, M. Murugan, B.P. Ölveczky, and R. Mooney, “Motor circuits are required to encode a sensory model for imitative learning”, Nature neuroscience 15(10), 2012, pp. 1454–1459.
[562] Mackevicius, E.L., and M.S. Fee, “Building a state space for song learning”, Curr. Opin. Neurobiol. 49, 2018, pp. 59–68.
[563] Kanoski, S.E., M.R. Hayes, and K.P. Skibicka, GLP-1 and weight loss: Unraveling the diverse neural circuitry”, Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(10), 2016, pp. R885–95.
[564] Ng, A.Y., and S. Russell, “Algorithms for inverse reinforcement learning”, ICML 67, 2000, pp. 663–670.
[565] Rothkopf, C.A., and D.H. Ballard, “Modular inverse reinforcement learning for visuomotor behavior”, Biol. Cybern. 107(4), 2013, pp. 477–490.
[566] Yamaguchi, S., H. Naoki, M. Ikeda, et al., “Identification of animal behavioral strategies by inverse reinforcement learning”, PLoS Comput. Biol. 14(5), 2018, pp. e1006122.
[567] Jara-Ettinger, J., “Theory of mind as inverse reinforcement learning”, Curr. Opin. Behav. Sci. 29, 2019, pp. 105–110.
[568] Tan, J., X. Shen, X. Zhang, Z. Song, and Y. Wang, “Estimating reward function from medial prefrontal cortex cortical activity using inverse reinforcement learning”, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, pp. 3346–3349.
[569] Kalweit, G., M. Kalweit, M. Alyahyay, et al., NeuRL: Closed-form inverse reinforcement learning for neural decoding”, arXiv [q-bio.NC], 2022.
[570] Ashwood, Z.C., A. Jha, and J.W. Pillow, “Dynamic inverse reinforcement learning for characterizing animal behavior”, Neural Inf Process Syst, 2022.
[571] Gong, J., S. Cao, S. Korivand, and N. Jalili, “Reconstructing human gaze behavior from EEG using inverse reinforcement learning”, Smart Health 32(100480), 2024, pp. 100480.
[572] Lee, S.H., M.-H. Oh, and W.-Y. Ahn, “Inverse reinforcement learning captures value representations in the reward circuit in a real-time driving task: A preliminary study”, (2024).
[573] Urbaniak, R., M. Xie, and E. Mackevicius, “Linking cognitive strategy, neural mechanism, and movement statistics in group foraging behaviors”, Sci. Rep. 14(1), 2024, pp. 21770.
[574] Davidson, G., G. Todd, J. Togelius, T.M. Gureckis, and B.M. Lake, “Goals as reward-producing programs”, 2024. https://arxiv.org/abs/2405.13242
[575] Cisek, P., “Resynthesizing behavior through phylogenetic refinement”, Atten. Percept. Psychophys. 81(7), 2019, pp. 2265–2287.
[576] Karin, O., and U. Alon, “The dopamine circuit as a reward-taxis navigation system”, PLoS Comput. Biol. 18(7), 2022, pp. e1010340.
[577] Yao, Z., C.T. van Velthoven, M. Kunst, et al., “A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain”, Nature 624(7991), 2023, pp. 317–332.
[578] Barack, D.L., and J.W. Krakauer, “Two views on the cognitive brain”, Nat. Rev. Neurosci., 2021, pp. 1–13.
[579] Räuker, T., A. Ho, S. Casper, and D. Hadfield-Menell, “Toward transparent AI: A survey on interpreting the inner structures of deep neural networks”, 2023.
[580] Bereska, L., and E. Gavves, “Mechanistic interpretability for AI safety – a review”, 2024.
[581] Olah, C., N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter, “Zoom in: An introduction to circuits”, Distill 5(3), 2020, pp. e00024.001.
[582] Elhage, N., N. Nanda, C. Olsson, et al., “A mathematical framework for transformer circuits”, Transformer Circuits Thread, 2021.
[583] Zou, A., L. Phan, S. Chen, et al., “Representation engineering: A top-down approach to AI transparency”, arXiv [cs.LG], 2023.
[584] Nanda, N., “A longlist of theories of impact for interpretability”, 2022.
[585] Goh, G., †N.C., †C.V., et al., “Multimodal neurons in artificial neural networks”, Distill, 2021.
[586] Burns, C., H. Ye, D. Klein, and J. Steinhardt, “Discovering latent knowledge in language models without supervision”, 2024.
[587] Turner, A.M., L. Thiergart, G. Leech, et al., “Activation addition: Steering language models without optimization”, 2024.
[588] Bau, D., J.-Y. Zhu, H. Strobelt, et al., GAN dissection: Visualizing and understanding generative adversarial networks”, 2018.
[589] Meng, K., D. Bau, A. Andonian, and Y. Belinkov, “Locating and editing factual associations in GPT, 2023.
[590] Thompson, J.A.F., “Forms of explanation and understanding for neuroscience and artificial intelligence”, J. Neurophysiol. 126(6), 2021, pp. 1860–1874.
[591] Jonas, E., and K.P. Kording, “Could a neuroscientist understand a microprocessor?”, PLoS Comput. Biol. 13(1), 2017, pp. e1005268.
[592] Lillicrap, T.P., and K.P. Kording, “What does it mean to understand a neural network?”, arXiv [cs.LG], 2019.
[593] Olah, C., “Interpretability vs neuroscience”, 2021.
[594] Kar, K., S. Kornblith, and E. Fedorenko, “Interpretability of artificial neural network models in artificial intelligence vs. neuroscience”, Nat Mach Intell 4(12), 2022, pp. 1065–1067.
[595] Shan Xu, C., M. Januszewski, Z. Lu, et al., “A connectome of the adult drosophila central brain”, bioRxiv, 2020, pp. 2020.01.21.911859.
[596] Scheffer, L.K., C.S. Xu, M. Januszewski, et al., “A connectome and analysis of the adult drosophila central brain”, Elife 9, 2020.
[597] Nguyen, J.P., F.B. Shipley, A.N. Linder, et al., “Whole-brain calcium imaging with cellular resolution in freely behaving caenorhabditis elegans”, Proc. Natl. Acad. Sci. U. S. A. 113(8), 2016, pp. E1074–81.
[598] Aimon, S., T. Katsuki, T. Jia, et al., “Fast near-whole brain imaging in adult drosophila during responses to stimuli and behavior”, bioRxiv, 2018, pp. 033803.
[599] Lad, V., W. Gurnee, and M. Tegmark, “The remarkable robustness of LLMs: Stages of inference?”, arXiv [cs.LG], 2024.
[600] Shin, H., M.B. Ogando, L. Abdeladim, et al., “Recurrent pattern completion drives the neocortical representation of sensory inference”, 2023.
[601] Adesnik, H., and L. Abdeladim, “Probing neural codes with two-photon holographic optogenetics”, Nat. Neurosci. 24(10), 2021, pp. 1356–1366.
[602] Shadlen, M.N., and W.T. Newsome, “The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding”, J. Neurosci. 18(10), 1998, pp. 3870–3896.
[603] Watanakeesuntorn, W., K. Takahashi, K. Ichikawa, et al., “Massively parallel causal inference of whole brain dynamics at single neuron resolution”, 2020.
[604] Vyas, S., M.D. Golub, D. Sussillo, and K.V. Shenoy, “Computation through neural population dynamics”, Annu. Rev. Neurosci. 43(1), 2020, pp. 249–275.
[605] Maheswaranathan, N., A. Williams, M. Golub, S. Ganguli, and D. Sussillo, “Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics”, Adv. Neural Inf. Process. Syst. 32, 2019.
[606] Vaswani, A., N. Shazeer, N. Parmar, et al., “Attention is all you need”, 2017.
[607] Dutta, S., T. Gautam, S. Chakrabarti, and T. Chakraborty, “Redesigning the transformer architecture with insights from multi-particle dynamical systems”, arXiv [cs.LG], 2021.
[608] Beck, M., K. Pöppel, M. Spanring, et al., xLSTM: Extended long short-term memory”, arXiv [cs.LG], 2024.
[609] Dao, T., and A. Gu, “Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality”, arXiv [cs.LG], 2024.
[610] Elhage, N., T. Hume, C. Olsson, et al., “Toy models of superposition”, Transformer Circuits Thread, 2022.
[611] Barak, O., M. Rigotti, and S. Fusi, “The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off”, J. Neurosci. 33(9), 2013, pp. 3844–3856.
[612] Meunier, D., R. Lambiotte, and E.T. Bullmore, “Modular and hierarchically modular organization of brain networks”, Front. Neurosci. 4, 2010, pp. 200.
[613] Bonhoeffer, T., and A. Grinvald, “Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns”, Nature 353, 1991, pp. 429–431.
[614] Tanaka, K., “Columns for complex visual object features in the inferotemporal cortex: Clustering of cells with similar but slightly different stimulus selectivities”, Cereb. Cortex 13(1), 2003, pp. 90–99.
[615] Paik, S.-B., and D.L. Ringach, “Retinal origin of orientation maps in visual cortex”, Nat. Neurosci. 14(7), 2011, pp. 919–925.
[616] Ringach, D.L., P.J. Mineault, E. Tring, N.D. Olivas, P. Garcia-Junco-Clemente, and J.T. Trachtenberg, “Spatial clustering of tuning in mouse primary visual cortex”, Nat. Commun. 7(1), 2016, pp. 12270.
[617] Voss, C., G. Goh, N. Cammarata, M. Petrov, L. Schubert, and C. Olah, “Branch specialization”, Distill 6(4), 2021.
[618] Achterberg, J., D. Akarca, D.J. Strouse, J. Duncan, and D.E. Astle, “Spatially-embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings”, 2022.
[619] Kumar, S., T.R. Sumers, T. Yamakoshi, et al., “Shared functional specialization in transformer-based language models and the human brain”, Nat. Commun. 15(1), 2024, pp. 5523.
[620] Dobzhansky, T., “Nothing in biology makes sense except in the light of evolution”, Am. Biol. Teach. 35(3), 1973, pp. 125–129.
[621] Kaznatcheev, A., and K.P. Kording, “Nothing makes sense in deep learning, except in the light of evolution”, 2022.
[622] Mordvintsev, A., E. Randazzo, E. Niklasson, M. Levin, and S. Greydanus, “Thread: Differentiable self-organizing systems”, Distill, 2020.
[623] Stanley, K.O., J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks through neuroevolution”, Nat. Mach. Intell. 1(1), 2019, pp. 24–35.
[624] Sherrington, C.S., The integrative action of the nervous system, Yale University Press, New Haven, CT, US, 1906.
[625] Hartline, H.K., “The receptive fields of optic nerve fibers”, Am. J. Physiol. 130(4), 1940, pp. 690–699.
[626] De Boer, E., and P. Kuyper, “Triggered correlation”, IEEE Transactions on Biomedical Engineering(3), 1968, pp. 169–179.
[627] Marmarelis, P.Z., and V.Z. Marmarelis, Analysis of physiological systems: The white-noise approach, Plenum Press New York, 1978.
[628] Ringach, D.L., “Mapping receptive fields in primary visual cortex”, J. Physiol. 558(Pt 3), 2004, pp. 717–728.
[629] Schwartz, O., J.W. Pillow, N.C. Rust, and E.P. Simoncelli, “Spike-triggered neural characterization”, J. Vis. 6(4), 2006.
[630] Berkes, P., and L. Wiskott, “Analysis and interpretation of quadratic models of receptive fields”, Nat. Protoc. 2(2), 2007, pp. 400–407.
[631] Paninski, L., “Maximum likelihood estimation of cascade point-process neural encoding models”, Network: Computation in Neural Systems 15(4), 2004, pp. 243–262.
[632] McFarland, J.M., Y. Cui, and D.A. Butts, “Inferring nonlinear neuronal computation based on physiologically plausible inputs”, PLoS Comput. Biol. 9(7), 2013, pp. e1003143.
[633] Wu, A., I.-S. Park, and J.W. Pillow, “Convolutional spike-triggered covariance analysis for neural subunit models”, Adv. Neural Inf. Process. Syst., 2015, pp. 793–801.
[634] McIntosh, L.T., N. Maheswaranathan, A. Nayebi, S. Ganguli, and S.A. Baccus, “Deep learning models of the retinal response to natural scenes”, Adv. Neural Inf. Process. Syst. 29, 2016, pp. 1369–1377.
[635] Cadena, S.A., F.H. Sinz, T. Muhammad, et al., “How well do deep neural networks trained on object recognition characterize the mouse visual system?”, 2019.
[636] Gosselin, F., and P.G. Schyns, “Bubbles: A technique to reveal the use of information in recognition tasks”, Vision Res. 41(17), 2001, pp. 2261–2271.
[637] Hubel, D.H., and T.N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex”, J. Physiol. 195(1), 1968, pp. 215–243.
[638] Butts, D.A., and M.S. Goldman, “Tuning curves, neuronal variability, and sensory coding”, PLoS Biol. 4(4), 2006, pp. e92.
[639] DiMattina, C., and K. Zhang, “Adaptive stimulus optimization for sensory systems neuroscience”, Front. Neural Circuits 7, 2013, pp. 101.
[640] Feather, J., G. Leclerc, A. Mądry, and J.H. McDermott, “Model metamers reveal divergent invariances between biological and artificial neural networks”, Nat. Neurosci., 2023, pp. 1–18.
[641] Gold, J.I., and M.N. Shadlen, “The neural basis of decision making”, Annu. Rev. Neurosci. 30, 2007, pp. 535–574.
[642] Cohen, M.R., and W.T. Newsome, “Estimates of the contribution of single neurons to perception depend on timescale and noise correlation”, J. Neurosci. 29(20), 2009, pp. 6635–6648.
[643] Bernstein, J.G., P.A. Garrity, and E.S. Boyden, “Optogenetics and thermogenetics: Technologies for controlling the activity of targeted cells within intact neural circuits”, Curr. Opin. Neurobiol. 22(1), 2012, pp. 61–71.
[644] Emiliani, V., E. Entcheva, R. Hedrich, et al., “Optogenetics for light control of biological systems”, Nat Rev Methods Primers 2(1), 2022, pp. 1–25.
[645] Churchland, M.M., J.P. Cunningham, M.T. Kaufman, et al., “Neural population dynamics during reaching”, Nature 487(7405), 2012, pp. 51–56.
[646] Saxena, S., and J.P. Cunningham, “Towards the neural population doctrine”, Curr. Opin. Neurobiol. 55, 2019, pp. 103–111.
[647] Ebitz, R.B., and B.Y. Hayden, “The population doctrine in cognitive neuroscience”, Neuron 109(19), 2021, pp. 3055–3068.
[648] Gallego, J.A., M.G. Perich, L.E. Miller, and S.A. Solla, “Neural manifolds for the control of movement”, Neuron 94(5), 2017, pp. 978–984.
[649] Chung, S., and L.F. Abbott, “Neural population geometry: An approach for understanding biological and artificial neural networks”, Curr. Opin. Neurobiol. 70, 2021, pp. 137–144.
[650] Norman, K.A., S.M. Polyn, G.J. Detre, and J.V. Haxby, “Beyond mind-reading: Multi-voxel pattern analysis of fMRI data”, Trends Cogn. Sci. 10(9), 2006, pp. 424–430.
[651] Kriegeskorte, N., and J. Diedrichsen, “Inferring brain-computational mechanisms with models of activity measurements”, Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1705), 2016.
[652] Bell, A.J., and T. Sejnowski, “A non-linear information maximisation algorithm that performs blind separation”, Adv. Neural Inf. Process. Syst., 1994, pp. 467–474.
[653] Lee, D.D., and H.S. Seung, “Learning the parts of objects by non-negative matrix factorization”, Nature 401(6755), 1999, pp. 788–791.
[654] Williams, A.H., T.H. Kim, F. Wang, et al., “Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis”, Neuron 98(6), 2018, pp. 1099–1115.e8.
[655] Pellegrino, A., H. Stein, and N.A. Cayco-Gajic, “Dimensionality reduction beyond neural subspaces with slice tensor component analysis”, Nat. Neurosci. 27(6), 2024, pp. 1199–1210.
[656] Haxby, J.V., “Multivariate pattern analysis of fMRI: The early beginnings”, Neuroimage 62(2), 2012, pp. 852–855.
[657] Naselaris, T., K.N. Kay, S. Nishimoto, and J.L. Gallant, “Encoding and decoding in fMRI, Neuroimage 56(2), 2011, pp. 400–410.
[658] Wang, H.-T., J. Smallwood, J. Mourao-Miranda, et al., “Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists”, Neuroimage 216, 2020, pp. 116745.
[659] Sussillo, D., “Neural circuits as computational dynamical systems”, Curr. Opin. Neurobiol. 25, 2014, pp. 156–163.
[660] Strogatz, S., M. Friedman, A.J. Mallinckrodt, and S. McKay, “Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering”, Comput. Phys. Commun. 8(5), 1994, pp. 532–532.
[661] Khosla, M., A.H. Williams, J. McDermott, and N. Kanwisher, “Privileged representational axes in biological and artificial neural networks”, 2024.
[662] Prince, J.S., C. Conwell, G.A. Alvarez, and T. Konkle, “A case for sparse positive alignment of neural systems”, (2024).
[663] Sporns, O., G. Tononi, and R. Kötter, “The human connectome: A structural description of the human brain”, PLoS Comput. Biol. 1(4), 2005, pp. e42.
[664] Seung, S., Connectome: How the brain’s wiring makes us who we are, Houghton Mifflin Harcourt, 2012.
[665] Bassett, D.S., and O. Sporns, “Network neuroscience”, Nat. Neurosci. 20(3), 2017, pp. 353–364.
[666] Barabási, D.L., G. Bianconi, E. Bullmore, et al., “Neuroscience needs network science”, 2023.
[667] Hulse, B.K., H. Haberkern, R. Franconville, et al., “A connectome of the drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection”, Elife 10, 2021, pp. e66039.
[668] Shinomiya, K., A. Nern, I.A. Meinertzhagen, S.M. Plaza, and M.B. Reiser, “Neuronal circuits integrating visual motion information in drosophila melanogaster”, Curr. Biol. 32(16), 2022, pp. 3529–3544.e2.
[669] Cammarata, N., G. Goh, S. Carter, C. Voss, L. Schubert, and C. Olah, “Curve circuits”, Distill, 2021.
[670] Zeiler, M.D., and R. Fergus, “Visualizing and understanding convolutional networks”, arXiv [cs.CV], 2013.
[671] Cammarata, N., S. Carter, G. Goh, C. Olah, M. Petrov, and L. Schubert, “Thread: circuits”, Distill 5(3), 2020, pp. e24.
[672] Wang, K., A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt, “Interpretability in the wild: A circuit for indirect object identification in GPT-2 small”, arXiv [cs.LG], 2022.
[673] Heimersheim, S., and N. Nanda, “How to use and interpret activation patching”, arXiv [cs.LG], 2024.
[674] Templeton, A., T. Conerly, J. Marcus, et al., “Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet”, Transformer Circuits Thread, 2024.
[675] Mueller, A., J. Brinkmann, M. Li, et al., “The quest for the right mediator: A history, survey, and theoretical grounding of causal interpretability”, arXiv [cs.LG], 2024.
[676] Cunningham, H., A. Ewart, L. Riggs, R. Huben, and L. Sharkey, “Sparse autoencoders find highly interpretable features in language models”, arXiv [cs.LG], 2023.
[677] Gao, L., T.D. la Tour, H. Tillman, et al., “Scaling and evaluating sparse autoencoders”, arXiv [cs.LG], 2024.
[678] Alain, G., and Y. Bengio, “Understanding intermediate layers using linear classifier probes”, arXiv [stat.ML], 2016.
[679] Rumelhart, D.E., J.L. Mcclelland, and P.R. Group, Parallel distributed processing, volume 1: Explorations in the microstructure of cognition: foundations, Bradford Books, Cambridge, Mass, 1987.
[680] Hinton, g.E., S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets”, Neural Comput. 18(7), 2006, pp. 1527–1554.
[681] Lee, H., R. Grosse, R. Ranganath, and A.Y. Ng, “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations”, Proceedings of the 26th international conference on machine learning, (2009), 609–616.
[682] Barredo Arrieta, A., N. Díaz-Rodríguez, J. Del Ser, et al., “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion 58, 2020, pp. 82–115.
[683] Simonyan, K., A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps”, https://openreview.net › forumhttps://openreview.net › forum, 2013.
[684] Olah, C., A. Satyanarayan, I. Johnson, et al., “The building blocks of interpretability”, Distill 3(3), 2018.
[685] Zimmermann, R.S., J. Borowski, R. Geirhos, M. Bethge, T.S.A. Wallis, and W. Brendel, “How well do feature visualizations support causal understanding of CNN activations?”, Proceedings of the 35th international conference on neural information processing systems, Curran Associates Inc. (2024), 11730–11744.
[686] Freeman, J., C.M. Ziemba, D.J. Heeger, E.P. Simoncelli, and J.A. Movshon, “A functional and perceptual signature of the second visual area in primates”, Nat. Neurosci. 16(7), 2013, pp. 974–981.
[687] Olsson, C., N. Elhage, N. Nanda, et al., “In-context learning and induction heads”, arXiv [cs.LG], 2022.
[688] Geva, M., J. Bastings, K. Filippova, and A. Globerson, “Dissecting recall of factual associations in auto-regressive language models”, arXiv [cs.CL], 2023.
[689] Nanda, N., L. Chan, T. Lieberum, J. Smith, and J. Steinhardt, “Progress measures for grokking via mechanistic interpretability”, arXiv [cs.LG], 2023.
[690] Quirke, P., C. Neo, and F. Barez, “Increasing trust in language models through the reuse of verified circuits”, arXiv [cs.LG], 2024.
[691] Syed, A., C. Rager, and A. Conmy, “Attribution patching outperforms automated circuit discovery”, arXiv [cs.LG], 2023.
[692] Conmy, A., A. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso, “Towards automated circuit discovery for mechanistic interpretability”, Adv. Neural Inf. Process. Syst. 36, 2023, pp. 16318–16352.
[693] Weiss, G., Y. Goldberg, and E. Yahav, “Thinking like transformers”, arXiv [cs.LG], 2021.
[694] Zhou, H., A. Bradley, E. Littwin, et al., “What algorithms can transformers learn? A study in length generalization”, 2023.
[695] Lindner, D., J. Kramar, S. Farquhar, M. Rahtz, T. McGrath, and V. Mikulik, “Tracr: Compiled transformers as a laboratory for interpretability”, arXiv, 2023.
[696] Kohonen, T., P. Lehtiö, J. Rovamo, J. Hyvärinen, K. Bry, and L. Vainio, “A principle of neural associative memory”, Neuroscience 2(6), 1977, pp. 1065–1076.
[697] Hopfield, J.J., “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. Sci. U. S. A. 79(8), 1982, pp. 2554–2558.
[698] Hinton, G.E., “Learning distributed representations of concepts”, In R.G.M. Morris, ed., Parallel distributed processing: Implications for psychology and neurobiology (pp. Clarendon Press/Oxford University Press, x, New York, NY, US, 1989, 46–61.
[699] Thorpe, S., “Local vs. Distributed coding”, Intellectica 8(2), 1989, pp. 3–40.
[700] Rigotti, M., O. Barak, M.R. Warden, et al., “The importance of mixed selectivity in complex cognitive tasks”, Nature 497(7451), 2013, pp. 585–590.
[701] Bricken, T., A. Templeton, J. Batson, et al., “Towards monosemanticity: Decomposing language models with dictionary learning”, Transformer Circuits Thread, 2023.
[702] McDougall, C.S., A. Conmy, C. Rushing, T. McGrath, and N. Nanda, “Copy suppression: Comprehensively understanding an attention head”, https://openreview.net › forumhttps://openreview.net › forum, 2023.
[703] Rajamanoharan, S., T. Lieberum, N. Sonnerat, et al., “Jumping ahead: Improving reconstruction fidelity with JumpReLU sparse autoencoders”, arXiv [cs.LG], 2024.
[704] Rajamanoharan, S., A. Conmy, L. Smith, et al., “Improving dictionary learning with gated sparse autoencoders”, arXiv [cs.LG], 2024.
[705] Lieberum, T., S. Rajamanoharan, A. Conmy, et al., “Gemma scope: Open sparse autoencoders everywhere all at once on gemma 2”, arXiv [cs.LG], 2024.
[706] Marks, S., C. Rager, E.J. Michaud, Y. Belinkov, D. Bau, and A. Mueller, “Sparse feature circuits: Discovering and editing interpretable causal graphs in language models”, arXiv [cs.LG], 2024.
[707] Marks, S., and M. Tegmark, “The geometry of truth: Emergent linear structure in large language model representations of true/false datasets”, arXiv [cs.AI], 2023.
[708] Sharma, A.S., D. Atkinson, and D. Bau, “Locating and editing factual associations in mamba”, arXiv [cs.CL], 2024.
[709] Wang, J., X. Ge, W. Shu, et al., “Towards universality: Studying mechanistic similarity across language model architectures”, arXiv [cs.CL], 2024.
[710] Liu, Z., E. Gan, and M. Tegmark, “Seeing is believing: Brain-inspired modular training for mechanistic interpretability”, Entropy (Basel) 26(1), 2023.
[711] Jarvis, D., R. Klein, B. Rosman, and A.M. Saxe, “On the specialization of neural modules”, arXiv [cs.LG], 2024.
[712] Clune, J., J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity”, Proc. Biol. Sci. 280(1755), 2013, pp. 20122863.
[713] Margalit, E., H. Lee, D. Finzi, J.J. DiCarlo, K. Grill-Spector, and D.L.K. Yamins, “A unifying framework for functional organization in early and higher ventral visual cortex”, Neuron 112(14), 2024, pp. 2435–2451.e7.
[714] Kouh, M., and T. Poggio, “A canonical neural circuit for cortical nonlinear operations”, Neural Comput. 20(6), 2008, pp. 1427–1451.
[715] Liu, Z., Y. Wang, S. Vaidya, et al., KAN: Kolmogorov-arnold networks”, 2024.
[716] Steinmetz, N.A., C. Aydin, A. Lebedeva, et al., “Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings”, Science 372(6539), 2021, pp. eabf4588.
[717] Meng, Y., K. Hynynen, and N. Lipsman, “Applications of focused ultrasound in the brain: From thermoablation to drug delivery”, Nat. Rev. Neurol. 17, 2020, pp. 7–22.
[718] Sevilla, J., L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute trends across three eras of machine learning”, arXiv [cs.LG], 2022.
[719] Markiewicz, C.J., K.J. Gorgolewski, F. Feingold, et al., The OpenNeuro resource for sharing of neuroscience data, eLife 10, 2021, pp. e71774.
[720] Marblestone, A., A. Gamick, T. Kalil, C. Martin, M. Cvitkovic, and S.G. Rodriques, “Unblock research bottlenecks with non-profit start-ups”, Nature 601(7892), 2022, pp. 188–190.
[721] Greydanus, S., and D. Kobak, “Scaling down deep learning with MNIST-1D, arXiv [cs.LG], 2020.
[722] Wang, G., Y. Sun, S. Cheng, and S. Song, “Evolving connectivity for recurrent spiking neural networks”, Neural information processing systems, (2023).
[723] Abril-Pla, O., V. Andreani, C. Carroll, et al., PyMC: A modern, and comprehensive probabilistic programming framework in python”, PeerJ Comput. Sci. 9, 2023, pp. e1516.
[724] Stringer, C., M. Pachitariu, N. Steinmetz, C.B. Reddy, M. Carandini, and K.D. Harris, “Spontaneous behaviors drive multidimensional, brainwide activity”, Science 364(6437), 2019, pp. 255.
[725] Halchenko, Y., J.T.W. II, H. Christian, et al., “Dandi/dandi-cli: 0.64.0”, 2024. https://zenodo.org/records/14171788
[726] Rübel, O., A. Tritt, R. Ly, et al., The Neurodata Without Borders ecosystem for neurophysiological data science, eLife 11, 2022, pp. e78362.
[727] Gorgolewski, K.J., T. Auer, V.D. Calhoun, et al., The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, Scientific Data 3(1), 2016, pp. 160044.
[728] Miller, K.L., F. Alfaro-Almagro, N.K. Bangerter, et al., Multimodal population brain imaging in the UK Biobank prospective epidemiological study, Nature Neuroscience 19(11), 2016, pp. 1523–1536.
[729] Kalcher, K., W. Huf, R.N. Boubela, et al., Fully exploratory network independent component analysis of the 1000 functional connectomes database, Frontiers in Human Neuroscience 6, 2012.
[730] Van Essen, D.C., K. Ugurbil, E. Auerbach, et al., The Human Connectome Project: A data acquisition perspective, NeuroImage 62(4), 2012, pp. 2222–2231.
[731] Casey, B.J., T. Cannonier, M.I. Conley, et al., The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites, Developmental Cognitive Neuroscience 32, 2018, pp. 43–54.
[732] Alexander, L.M., J. Escalera, L. Ai, et al., An open resource for transdiagnostic research in pediatric mental health and learning disorders, Scientific Data 4(1), 2017, pp. 170181.
[733] Boyle, J., B. Pinsard, V. Borghesani, F. Paugam, E. DuPre, and P. Bellec, The Courtois NeuroMod project: Quality assessment of the initial data release (2020), 2023 Conference on Cognitive Computational Neuroscience, Cognitive Computational Neuroscience (2023).
[734] Seeliger, K., R.P. Sommers, U. Güçlü, S.E. Bosch, and M.A.J. Van Gerven, “A large single-participant fMRI dataset for probing brain responses to naturalistic stimuli in space and time”, 2019. http://biorxiv.org/lookup/doi/10.1101/687681
[735] Siegel, J.S., S. Subramanian, D. Perry, et al., Psilocybin desynchronizes the human brain, Nature 632(8023), 2024, pp. 131–138.